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We study the blow-up self-similar solutions of the radially symmetric nonlinear
Schrödinger equation (NLS) given byiut + urr + d− 1

r ur + u|u|2, with dimension
d> 2. These solutions become infinite in a finite timeT . By a series of careful
numerical computations, partly supported by analytic results, we demonstrate that
there is a countably infinite set of blow-up self-similar solutions which satisfy a
second order complex ordinary differential equation with an integral constraint. These
solutions are characterised by the number of oscillations in their amplitude whend
is close to 2. The solutions are computed as functions ofd and their behaviour in
the critical limit asd → 2 is investigated. The stability of these solutions is then
studied by solving the NLS by using an adaptive numerical method. This method
uses moving mesh partial differential equations and exploits the scaling invariance
properties of the underlying equation. We demonstrate that the single-humped self-
similar solution is globally stable whereas the multi-humped solutions all appear to
be unstable. c© 1999 Academic Press

Key Words:nonlinear Schr¨odinger equation; finite time blow-up; self-similar
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1. INTRODUCTION

The cubic nonlinear Schr¨odinger equation (NLS)

i
∂u

∂t
+1u+ |u|2u = 0, t > 0 (1.1)

1 This work was supported in part by the NSERC (Canada) under Grant OGP-0008781, the Royal Society, and
the EPSRC (UK) under Grant GR/J56219.

2 To whom correspondence should be addressed.

756

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press
All rights of reproduction in any form reserved.



SOLUTIONS OF THE NONLINEAR SCHR̈ODINGER EQ. 757

u(x, 0) = u0(x), x ∈ Rd (1.2)

describes many physical situations, including phenomena in nonlinear optics and plasma
physics (see [Ha89, Za84]). For the well studied case ofd = 1, the equation is integrable
and a solution exists globally. Ifd ≥ 2 then for some initial conditions, such as those for
which the invariant energy

E =
∫

Rd

(
|∇u0|2− 1

2
|u0|4

)
dx < 0, (1.3)

the NLS has solutions that become singular in a finite timeT . In this case the solution
becomes infinite at a single point at which there is a growing and increasingly narrow peak.
In plasma physics, the singularity is usually called a collapse, and in nonlinear optics, the
singularity corresponds to an extreme increase of the field amplitude due to self-focusing.
There is considerable interest in the nature of the behaviour of this peak and many authors
(see [ADKM92, FP98, Fi96, TS92, LPSS88a–LPSS88c, MPSS86]) have investigated the
structure of the singularity both numerically and analytically. These investigations have
usually considered the case of radially symmetric solutions which are functions ofr = |x|
where the singularity occurs atr = 0. In an important series of papers, LeMesurieret al.
[LPSS88a, LPSS88b] and Landmanet al.[LPSS88c] have used a numerical method derived
from rescaling properties of the underlying equation calleddynamic rescaling. This method
has proved successful in both calculating the blow-up rate and giving significant information
about the shape of the singularity. In dimensiond= 3 (and indeed for all 2< d< 4 for
radially symmetric solutions), the overwhelming evidence is that the solutions blow up in
a self-similar way so that there is a functionQ(ξ) and a scalara for which

u(r, t) = (2a(T − t))−1/2ei θ+i log(T/(T−t))/2aQ(x/(2a(T − t))1/2).

Here the functionQ(ξ) satisfies an ordinary differential equation with an integral constraint,
and the unknown scalara plays the role of a nonlinear eigenvalue. In contrast, in dimension
2 the numerical and asymptotic evidence is that the blow-up isapproximatelyself-similar
with

‖u‖∞ proportional to

(
(T − t)/ log log

1

T − t

)− 1
2

. (1.4)

Fibich and Papanicolaou [FP98] confirmed the log log law ford= 2 and showed asymptotic
equivalence of the adiabatic law of Fibich and Malkin and the loglog law. They also obtained
several formulas to approximately calculate the blow-up timeT and discussed more general
perturbed nonlinear Schr¨odinger equations. The value ofd= 2 is a critical point in the
analysis of (1.1) with qualitatively differnt behaviour occurring for the three cases ofd< 2,
d= 2, andd> 2.

In this paper we make a further analysis of the radially symmetric self-similar solutions
in the case of 2< d< 4. Our principle result will be a numerical demonstration of an infinite
number of distinct self-similar solutions which are characterised by the number of maxima
of the function|Q| whend is close to 2. These solutions are all parametrised byd and
exist whend= 3. For this particular value we study their stability by solving the partial
differential equation (1.1) numerically. The numerical method used is a development of
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the scale invariant moving mesh PDE methods described in [BHR96]. These methods are
closely related to dynamic rescaling techniques, but are rather more general and easier to
implement. Using these we demonstrate that the blow-up profiles in which|Q| is monotone
whend= 3 (computed in earlier papers) are globally stable, whereas the multi-bumped
profiles represent unstable self-similar solutions.

The layout of the remainder of this paper is as follows. In Section 2 we review some of the
existing theory for problem (1.1), derive the ordinary differential equation satisfied byQ,
and establish some analytic properties of the solutions. In Section 3 we solve the ordinary
differential equation numerically and demonstrate the existence of a countably infinite set
of multi-bumped solutions. In Section 4 we describe the underlying theory of the scale
invariant moving mesh methods used to compute the solutions of (1.1). In Section 5 we
use this method to investigate the stability of the self-similar solutions derived in Section 4.
Finally in Section 6 we draw some conclusions from this work.

2. SOME IDENTITIES AND AN EXISTENCE THEOREM FOR THE EQUATION

SATISFIED BY THE SELF-SIMILAR SOLUTIONS

If we take r = |x| and consider radially symmetric solutions of (1.1) only, then these
satisfy the partial differential equation

i
∂u

∂t
+ ∂

2u

∂r 2
+ d − 1

r

∂u

∂r
+ |u|2u = 0, (2.1)

whereu is complex-valued. For allt ≥ 0 this partial differential equation has two invariants
of evolution which are the mass

P =
∫ ∞

0
|u(r, t)|2r d−1 dr (2.2)

and the energy

E =
∫ ∞

0

(∣∣∣∣∂u(r, t)

∂r

∣∣∣∣2− 1

2
|u(r, t)|4

)
r d−1 dr. (2.3)

A particular class of global solutions of (2.1) is the so-calledwaveguide solutions u(r, t) =
eit R(r ), whereR(r ) satisfies

R′′(r )+ d − 1

r
R′(r )− R(r )+ R3(r ) = 0, R′(0) = 0, R(∞) = 0. (2.4)

Equation (2.4) has a unique, monotonically decreasing and positive solution [MS81] called
the Townes solitonwhich plays an important role in the analysis of (2.1) in the limit of
d→ 2. Using the waveguide solution, one can construct an exact solution of (2.1) which
blows up in a finite timeT and is of the form

u(r, t) = 1

T − t
R

(
r

T − t

)
exp

(
−i

r 2/4+ 1

T − t

)
.

However, this solution is unstable and has not been observed in numerical computations
(see [LPSS88b]).
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Now, if λ is any real number then Eq. (2.1) is invariant under the transformations

u→ eiλu (2.5)

or

t → λt, r → λ1/2r, u→ λ−1/2u. (2.6)

Motivated by these invariances we seek blow-up self-similar solutions of (2.1) which take
the form

u(r, t) = 1√
2a(T − t)

exp

(
i θ + i

2a
log

T

T − t

)
Q

(
r√

2a(T − t)

)
. (2.7)

At this stagea is an undetermined real number andθ is a fixed phase shift. Substituting
(2.7) into (2.1) we find that the functionQ(ξ) satisfies the following ordinary differntial
equation:

Qξξ + d − 1

ξ
Qξ − Q+ ia(ξQ)ξ + |Q|2Q = 0, (2.8)

Qξ (0) = 0, Q(0) = real, Q(∞) = 0. (2.9)

The resulting invariantsP andE then become

P = (T − t)(d−2)
∫ ∞

0
|Q(ξ)|2ξd−1 dξ, (2.10)

E = (T − t)−(4−d)
∫ ∞

0

(∣∣∣∣∂Q(ξ)

∂ξ

∣∣∣∣2− 1

2
|Q(ξ)|4

)
ξd−1 dξ. (2.11)

If we define

H(Q) ≡
∫ ∞

0

(∣∣∣∣∂Q(ξ)

∂ξ

∣∣∣∣2− 1

2
|Q(ξ)|4

)
ξd−1 dξ, (2.12)

then if 2< d< 4 and the energyE of the solution is finite, the self-similar solution must
have unboundedL2 norm and satisfy the constraint

H(Q) = 0. (2.13)

This form for a self-similar solution was given originally in [Za84]. The problem of finding
a self-similar solution is thus reduced to finding a functionQ(ξ) and a scalara which
together satisfy the ordinary differential equation (2.8), (2.9), and the constraint (2.13).
Solutions of this ordinary differential equation for which|Q| is monotone decreasing have
been calculated in [LPSS88b], and it has been reported that the equation with the constraint
has a unique solution. These numerical calculations imply that asd→ 2 we havea→ 0 and
Q→ R. An existence proof together with a demonstration of local uniqueness for both the
functionQ(ξ) anda in the limit of d→ 2 is given in [KL95]. Numerical calculations using
the dynamic rescaling method whend= 3, strongly imply that the monotone decreasing
solution represents a globally attracting form of behaviour, so that the blow-up solutions of
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the initial value problem when rescaled tend towards the functionQ(ξ) from a variety of
initial states.

In this paper we give numerical evidence which implies that problem (2.8), (2.9), and
(2.13) has an infinite number of solutions for which|Q(ξ)| is non-monotone and which
under transformation are unstable blow-up solutions.

We first obtain some useful identities and obtain the decay rate for the solutions of (2.8) for
2< d< 4. Wang [W90] proved that the initial value problem (2.8) and (2.9) has a solution
Q(ξ)with |Q(ξ)| ≤ cξ−1 for anya whend= 3. We show that this result can be generalized
for anyd> 2. In fact, we can prove that, for anyd> 2,a> 0, andQ(0), problem (2.8) and
(2.9) has a unique solution.

LEMMA 2.1. If Q(ξ) is a solution of(2.8) and(2.9), then

|ξQ′ + Q|2+ 1

2
ξ2|Q|4+

∫ ξ

0
s|Q(s)|4 ds

= (d − 2)|Q(0)|2+ ξ2|Q|2+ (3− d)|Q|2+ 2(3− d)
∫ ξ

0
s|Q′(s)|2 ds, (2.14)

2ξ Im(Q′ Q̄)+ 2(d − 2)
∫ ξ

0
Im(Q′ Q̄) ds+ aξ2|Q(ξ)|2 = 0, (2.15)

and

ξd|Q′|2− 2

a
ξd−1Im(Q′ Q̄)+ 1

2
ξd|Q|4+ 2ξd−1Re(Q′ Q̄)

= (4− d)
∫ ξ

0

(
|Q′(s)|2− 1

2
|Q(s)|4

)
sd−1 ds. (2.16)

Proof. Multiplying (2.8) by 2ξ k(ξ Q̄′+ Q̄)with k= 1 andk= d− 1, respectively, taking
real parts and integrating the results gives (2.14) fork= 1 and

ξd|Q′|2− ξd|Q|2+ 1

2
ξd|Q|4+ 2ξd−1Re(Q′ Q̄)− (4− d)∫ ξ

0

(
|Q′(s)|2− 1

2
|Q(s)|4

)
sd−1 ds+ (d − 2)

∫ ξ

0
sd−1|Q(s)|2 ds= 0 (2.17)

for k= d− 1. Similarly, multiplying (2.8) by 2ξ k Q̄ with k= 1 andk= d− 1, respectively,
taking imaginary parts, and integrating the results give (2.15) fork= 1 and

a(d − 2)
∫ ξ

0
sd−1|Q(s)|2 ds= aξd|Q(ξ)|2+ 2ξdIm(Q′ Q̄) (2.18)

for k= d− 1. Finally, substituting (2.18) into (2.17) gives (2.16).j

THEOREM 2.2. If 2< d< 4, then for any given initial value Q(0) and constant a> 0,
problem (2.8) and (2.9) has a unique solution. Furthermore,|Q(ξ)| ≤ cξ−1 and
|Q′(ξ)| ≤ cξ−α for large ξ , whereα= 1 if d ≥ 3 and0<α<d− 2 if d < 3.
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Proof. The problem is equivalent to the following integral equation:

Q(ξ) = Q(0)− ia
∫ ξ

0
sQ(s) ds+ 1

d − 2

×
∫ ξ

0
[(1+ iad − ia)− |Q(s)|2]Q(s)

(
s− sd−1

ξd−2

)
ds, Q(∞) = 0. (2.19)

From the theory of Volterra integral equations (see [Bu83]), (2.19) has a unique local
solution and can be extended toξ =∞ if |Q(ξ)| is bounded.

Now it suffices to prove that|Q| ≤ cξ−1 and|Q′(ξ)≤ cξ−α. Rewrite (2.14) as

(1− δ)|Q′|2+ δ
∣∣∣∣Q′ + Q

δξ

∣∣∣∣2+ |Q|2(1

2
|Q|2− 1

)
− 1

ξ2

(
1

δ
+ d − 2

)
|Q|2+ 1

ξ2

∫ ξ

0
s|Q(s)|4 ds

= d − 2

ξ2
|Q(0)|2+ 2(3− d)

ξ2

∫ ξ

0
s|Q′(s)|2 ds, (2.20)

where 0<δ<d− 2. From this identity we see that if|Q′| is bounded so is|Q|. Suppose
that|Q′| is unbounded. Then there exists a monotone sequenceξ j such that|Q′(ξ j )|→∞
asξ j →∞ and|Q′(ξ j )≥ |Q′(ξ)| for ξ j ≥ ξ . From (2.20),

(1− δ)|Q′(ξ j )|2 ≤ c+ 2(3− d)

ξ2
j

∫ ξ j

0
s|Q′(s)|2 ds≤ c+ (3− d)|Q′(ξ j )|2,

which is a contradiction asj→∞. Hence|Q| and|Q′| are bounded. By (2.15) we have

aξ2|Q(ξ)|2 ≤ cξ,

which implies|Q(ξ)| ≤ cξ−1/2. Successively substituting this and updated estimates into
(2.15) we obtain

|Q(ξ)| ≤ cξ−1+ε, (2.21)

where 0≤ ε <d− 2. Multiplying (2.20) byξ2α with 0<α< (d− 2)/(1− δ) we have

(1− δ)ξ2α|Q′|2 ≤ c+ 2(3− d)

ξ2−2α

∫ ξ

0
s|Q′(s)|2 ds≤ c+ 3− d

1− α max
0≤s≤ξ

s|Q′(s)|2,

which implies that ifd< 3 thenξ2α|Q′|2≤ c by a similar argument as before. Substituting
this inequality and (2.21) into (2.15) we obtain|Q| ≤ cξ−1.

If d≥ 3, we obtain|Q′| ≤ cξ−1 directly from (2.14). j

LEMMA 2.3. Suppose that Q is a solution of(2.8) and (2.9) and 2< d< 4, then
H(Q)= 0 iff ∣∣∣∣ξQ′ +

(
1+ i

a

)
Q

∣∣∣∣→ 0 asξ →∞. (2.22)
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Proof. Rewrite (2.16) as

ξd−2

∣∣∣∣ξQ′ +
(

1+ i

a

)
Q

∣∣∣∣2+ 1

2ξ4−d

[
ξ2|Q|2−

(
1+ 1

a2

)]2

−
(

1+ 1

a2

)2 1

ξ4−d

= (4− d)
∫ ξ

0

(
|Q′(s)|2− 1

2
|Q(s)|4

)
sd−1 ds, (2.23)

and the conclusion follows on lettingξ→∞. j

3. A PLETHORA OF MULTI-BUMP SELF-SIMILAR SOLUTIONS

From Theorem 2.2 in Section 2 we have that the initial value problem consisting of (2.8),
Q′(0)= 0, andQ(0) given has a unique global solution such that|Q(ξ)|→0 asξ→∞.
The solutions of the initial value problem which correspond to self-similar solutions of the
partial differential equation satisfy the integral identity (2.13), and from Lemma 2.3 we see
that this is equivalent to the point condition (2.22).

An alternative derivation of this result follows from the observation that for largeξ , there
are constantsα andβ which depend upon the initial conditions and for whichQ(ξ) is
asymptotic to

Q(ξ) ∼ αξ−1exp

(
− i

a
log(ξ)

)
+ βξ−(d−1)exp

(
− iaξ2

2
+ i

a
log(ξ)

)
. (3.1)

Observe that this comprises a slowly oscillating solution added to a more rapidly decaying,
but rapidly oscillating component. A simple calculation then implies that whenξ is large
the leading order contribution to (2.22) is given by∣∣∣∣ξQξ +

(
1+ i

a

)
Q

∣∣∣∣2 = |β|2a2ξ6−2d, (3.2)

and hence the solutions of (2.8), (2.9), and (2.22) are precisely those which oscillate slowly
asξ→∞ if |β| =0.

We present numerical evidence which strongly indicates that there are aninfinite num-
ber of multi-bump non-zero solutions of (2.8), (2.9), and (2.22). These lie on solution
branches parametrised byd such that asd→ 2,a→ 0 on each branch and eitherQ(0)→ 0
or Q(0)→ 2.20620086465 which is the value atξ = 0 of the ground state solutionR(ξ).
The branches are characterised by the number of oscillations of the function|Q(ξ)| and
are reminiscent of the multi-bump homoclinic solutions of real fourth order ordinary differ-
ential equations derived by Buffoni, Champneys, and Toland [CT93, BCT96]. The branch
identified by Papanicolaou and co-workers in [LPSS88b] is that for which the function
|Q(ξ)| is monotone decreasingin ξ whend is close to 2.

3.1. Numerical Methods

We use two numerical methods to solve the system (2.8), (2.9), and (2.22). The first,
based upon a shooting method, is robust in the sense that it will find a solution given a fairly
poor initial guess forQ(0) anda. The second, based upon collocation, requires a good
initial guess forQ(ξ) but is significantly faster and more accurate. Typically, we use it to
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follow a branch of solutions asd varies, once a starting solution on the branch has been
found by the shooting method.

First we describe the shooting method. Consider the initial value problem (2.8) with given
real a andγ ≡ Q(0). This has a solutionQ(ξ,a, γ ) valid for all ξ . This solution can be
constructed relatively easily using a standard ordinary differential equation solution method.
As the slowly varying solution we are seeking is close to highly oscillatory solutions, it is
important that it be approximated well. This requires the use of a stiff solver with high error
tolerance. Accordingly, we use a BDF method with relative tolerance of 10−14 to solve the
initial value problem.

Using this we solve forQ(ξ) in the range 0≤ ξ ≤ X for a suitably largeX and calculate
the function

F(X,a, γ ) ≡ |X Qξ + (1+ i /a)Q(X)|2. (3.3)

To enforce the condition thatβ = 0 we approximate the condition that

F(X,a, γ )→ 0 asX→∞ (3.4)

by takingX large and finding values ofa andγ such that

F(X,a, γ ) = 0.

This introduces an error which we shall show presently is small provided thatX is suffi-
ciently large. SettingF = 0 is equivalent to finding a (local) minimum ofF over a range
of values ofa andγ . According to the theory presented in [KL95], the solutions of (2.8),
(2.9), and (2.22) arelocally unique. Such points lead to values ofa andγ which are local
minimisers ofF(X,a, γ ). We define such points to be (A(X), 0(X)), and each such point
leads to a solution of (2.8), (2.9), and (2.22) provided thatF is zero at the local minimum
andA(X), 0(X) have limiting values asX→∞. Whereas earlier calculations reported in
[KL95], LPSS88b] claim uniqueness for the valuesA(X), 0(X) in the limit of X→∞ we
believe there to be an infinite number of such isolated points. To determine them we use the
following algorithm:

ALGORITHM 1.

• SetX large (typicallyX is in the range of 200 to 1000).
• Take an initial guess(a, γ ) for (A(X), 0(X)).
• Starting from the initial guess, find a local minimiser (A(X), 0(X)) for F .
• IncreaseX and repeat till convergence.

To perform the minimisation, we used a Broyden method (the NAG routine E04JAF)
which performed robustly for a variety of initial guesses. Indeed, this procedure proved far
more robust to errors in the initial guess than using a nonlinear solver to find the zeros of
F . Typically the minimisation terminated whenF < 10−15.

The values ofA(X), 0(X) so derived converge rapidly as the value ofX increases which
makes the procedure reasonably quick to implement. To see this, we continue the estimation
of the slowly varying solutionQ(ξ) for largeξ . A simple calculation shows that there is a
constantK which depends upona andα such that

Q(ξ) ∼ αξ−1 exp

(
− i

a
log(ξ)

)(
1+ K

ξ2

)
+ βξ−(d−1) exp

(
− iaξ2

2
+ i

a
log(ξ)

)
. (3.5)
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(It can be shown that whena is small,K is inversely proportional toa2.) Using (3.5) we
can further estimateF to give

F(X,a, γ ) ∼
∣∣∣∣−iaβX2−(d−1−i /a) exp

(
− iaX2

2

)
+ Kα

X3

(
1+ i

a

)
exp

(
− i

a
log(X)

)∣∣∣∣2.
We see from this estimate that ifF = 0 then

|β| ∼ Kα

a
Xd−6.

Observe that the resulting value ofβ is non-zero, but providedd< 6, β diminishes rapidly
as we increaseX. From this calculation we can estimate the resulting errors inA(X)
and0(X). Suppose that(A(X), 0(X))→ (A, 0) asX→∞. If A(X)− A and0(X)−0
are both small then from the standard theory for initial value problems, we have thatβ

is proportional to bothA(X)− A and0(X)−0. Indeed, numerical experiments strongly
imply that the constant of proportionality is in both cases independent of the value ofX.
From this we deduce that the error introduced by estimatingA and0 at a finite value of
X is also proportional toXd−6 for largeX. This result has been supported by some simple
numerical experiments.

While the shooting method coupled with the minimisation of the functionF is reasonably
robust with respect to the initial values, it still requires an initial guess to start it off.
This initial guess has to be reasonably close to the correct solution to prevent the highly
oscillatory part of the solution from dominating the slowly varying component and making
minimisation ofF impossible. Empirically, the starting values ofa andγ have to be within
5% of the correct values to give convergence. To obtain this initial guess we note from the
results in [KL95] that asd→ 2 we havea→ 0. Settinga= 0 andd= 2 in Eq. (2.8) gives

Rξξ+ 1

ξ
Rξ−R+R|R|2 = 0, Rξ (0) = 0, R(0) real, R→ 0 asξ→∞. (3.6)

It is well known that this equation has a unique positive solution (called theground state
[MS81]) which decays exponentially for largeξ . Indeed, there are a discrete set of values
of R(0) at which it has a solution, with the first three (in increasing order) given by

γ0 = 0, γ1 = 2.20620086465, γ2 = 3.33198926658.

Here the ground state is given byγ1. The solution of (2.8) for which|Q| is monotone
decreasing determined in [LPSS88b] is known to be a perturbation of the ground state with
Q(0) close toγ1 whend is close to 2. To seek more solutions we taked close to 2 and search
for values of (A, 0) in a neighbourhood of each of the points (0, γi ). In particular, taking
d= 2.01 we found many solutions with0 close to both 0 and toγ1, although none were
found close toγ2 or to larger values. These solutions served as the starting points of our
branch calculation, and each gave rise to a branch, classified by the number of oscillations
of |Q|, which were extended either forward tod= 4 or backward tod= 2.

Calculating the branches.Once the first point of a solution branch has been determined
it is possible to find subsequent points by using pseudo-arclength continuation as described
by Keller [Ke93]. This method uses a predictor corrector procedure to find points on the
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branch, in which values ofa, γ , and of the functionQ(ξ) are predicted from previous
solution values on the branch, and these values are then corrected using a nonlinear solver.
As the predicted values are close to the final values the nonlinear solver does not have to
be as robust as the methods used to get onto the branch, but instead it needs to be fast at
calculating a large number of points on the branches. To do this we used the following
algorithm:

ALGORITHM 2.

• SetX suitably large.
• For each new value ofd along a branch, construct an initial guess for the value of

a and of the functionQ(ξ), using interpolation from the previous solutions.
• Using the initial guess, solve the coupled two-point boundary value problem

Qξξ + d − 1

ξ
Qξ − Q+ ia(ξQ)ξ + Q|Q|2 = 0, aξ = 0,

with boundary conditions

Qξ (0) = 0, Im(Q(0)) = 0, X Qξ (X)+ (1+ i /a)Q(X) = 0.

If necessary, increaseX to obtain convergence.

The two-point boundary value problems are solved using a spline collocation procedure.
In particular, we use the code COLSYS [ACR81] with its continuation option. The code is
known for its ability to solve stiff problems, characterized by extreme boundary or interior
layers (and for which initial value methods tend to be extremely sensitive). COLSYS uses
an adaptive mesh procedure and can treat directly BVPs expressed as mixed-order systems.
As a starting guess for the solution on a branch, we use the solutionQ(ξ) obtained using the
shooting method ford= 2.01. As a check on this solution it is recalculated using COLSYS
with the shooting method solution as an initial guess. The resulting two solutions were
found to be almost indistinguishable. To see the phenomena of slow oscillating and fast
oscillating solutions, we plot the real part of the functionQ′(ξ) for 0≤ ξ ≤ 160 in Fig. 3.1.
The dotted line is obtained by the shooting method witha= 0.166125 andQ(0)= 0.0509.
The solid line is obtained by COLSYS witha= 0.166124963 andQ(0)= 0.050957837.

FIG. 3.1. The two curves are almost the same on the left, but the dotted line oscillates faster on the right after
enlargement.
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TABLE 3.1

Branches Bifurcating from Zero

0 A (m, n)

0.050957837 0.166124963 (0, 1)
0.067775686 0.112487547 (0, 2)
0.083801453 0.085818517 (0, 3)
0.099987189 0.069519523 (0, 4)
0.116433882 0.058454538 (0, 5)
0.133094235 0.050430462 (0, 6)
0.399602580 0.014988764 (0, 23)

3.2. Results

In the calculations two distinct families of multiple solution branches were determined
which either bifurcate atd= 2 from the zero solution(A, 0)= (0, 0) or from the ground
state solution(A, 0)= (0, γ1). All of these solution branches bifurcating from (0, 0) appear
to satisfy the conditionQ(0)<1 for all d> 2 with the second derivative of|Q| positive at
ξ = 0. In contrast, all of the branches bifurcating from (0, γ1) appear to satisfyQ(0)>1 for
all d> 2, with the second derivative of|Q| negative atξ = 0.

Each solution branch can be characterised by the number of bumps of the function|Q(ξ)|
whend is close to 2. We label each solution branch by the integers (m, n) such thatm= 0
and 1 corresponds to a branch bifurcating fromγ0 and fromγ1, respectively, andn is the
number ofmaximaof |Q(ξ)| for ξ ≥ 0 whend is close to 2. Thus the branch identified in
[LPSS88b] has the label (1, 1). We conjecture that there is no upper limit to the maximum
value ofn possible.

3.2.1. Starting points on the branch.All branches were started from solutions obtained
at d= 2.01 and the values of (A, 0) obtained using the shooting procedure withX= 500.
The resulting values indexed according to the bifurcation point are shown in Tables 3.1 and
3.2.

A feature of these solutions visible from the tables is that asn increases the value of0 is
monotone increasing in the first table and monotone decreasing in the second. The value of
A is monotone decreasing in both. Furthermore, the value ofA corresponding to the curve
(0, n) lies between the two values ofA corresponding to the curves (1, n) and (1, n+ 1),

TABLE 3.2

Branches Bifurcating from the Ground State

0 A (m, n)

2.120627439 0.385950653 (1, 1)
2.083537069 0.159401767 (1, 2)
2.054680304 0.108972064 (1, 3)
2.026406398 0.083476799 (1, 4)
1.998756776 0.067788407 (1, 5)
1.971847572 0.057096976 (1, 6)
1.827563573 0.029320039 (1, 12)
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FIG. 3.2. The (0, 1), (0, 2), and (0, 3) solutions whend= 2.01.

and the value ofA corresponding to the curve (0, n) is approximately equal to the value
corresponding to the curve (1, n+ 1).

In Fig. 3.2 we plot the function|Q(ξ)| for 0≤ ξ ≤ 25 for the solutions labeled
(0, 1), (0, 2), and (0, 3). The multi-bump nature of these solutions is very evident. Ob-
serve that all the maxima have similar magnitudes and locations.

In Fig. 3.3 we plot similarly the solutions labeled (1, 1), (1, 2), and (1, 3) together with
the ground state solutionR(ξ). It is clear from this figure that the labeled solutions each
start close to the ground state but that the solutions (1, 2) and (1, 3) have additional bumps.
Note also that the second maxima of the solutions (1, 2) and (1, 3) are close to each other.

It is also interesting to compare the solutions (0, 1) and (1, 2), which exist for very similar
values ofA. These are plotted together in Fig. 3.4. Observe that although the behaviour of
both for smallξ is quite different, the asymptotic behaviour asξ increases is very similar,
and in particular note the close correspondence of the bumps. A comparable phenomenon
occurs for the solutions labeled (0, 2) and (1, 3).

FIG. 3.3. The (1, 1), (1, 2), and (1, 3) solutions whend= 2.01.
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FIG. 3.4. A comparison of the (0, 1) and (1, 2) solutions whend= 2.01.

A different way to represent the solutions is to use the pseudo-phase-plane introduced in
[KL95]. For this we define

C = |Q| and D = Cξ /C = Re(Qξ /Q).

In these coordinates a solution which varies slowly at infinity has

C ∼ α/ξ and D ∼ −1/ξ asξ →∞.

Thus, this solution will approach the origin in the (C, D) plane along a straight line of
gradient−1/α. On the other hand, a solution which oscillates rapidly at infinity has

C ∼ α/ξ and D ∼ aβ

α
ξ3−d2a cos(aξ2/2+ 2 log(ξ)/a),

so thatD both oscillates rapidly and decays (or even grows) slowly. Thus, solutions in the
(C, D) plane which obey the condition (2.22) are easy to distinguish from those which do
not.

In Fig. 3.5 we plot the (C, D) phase plane of the first three solutions bifurcating from
zero. This figure is directly comparable with Fig. 3.2. A similar picture for the solutions
bifurcating from the ground state is presented in Fig. 3.6. The looping nature of the solutions
is clear in these pictures.

3.2.2. Continuing the solutions for increasing d.As discussed earlier, each of the solu-
tions described above serves as a starting point of a branch of solutions. In Figs. 3.7 and 3.8
we give two bifurcation diagrams for these solutions, plotting the values ofA and of0 over
a range of values ofd varying fromd= 2.000001 tod= 4. The graph for the values ofA
show thatA is amonotone increasingfunction ofd, with A→ 0 asd→ 2. Note furthermore
that the ordering of the values ofA on each of the curves ford= 2.01 (such that the value
of A on the curve (0, n) lies between the values for (1, n) and (1, n+ 1)), continues for all
values ofd, and we conjecture that the curves do not intersect at any point. From Fig. 3.8
the division of the solutions into two groups is very evident, withQ(0) tending either to 0
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FIG. 3.5. The phase plane of the (0, 1), (0, 2), and (0, 3) solutions whend= 2.01.

FIG. 3.6. The phase plane of the (1, 1), (1, 2), and (1, 3) solutions whend= 2.01.

FIG. 3.7. The value ofA as a function ofd for each of the branches.
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FIG. 3.8. The value of0 as a function ofd for each of the branches.

or toγ1 asd→ 2. Asd→ 4 (and presumably for larger values ofd) we note thatQ(0)→ 1.
For the branches bifurcating from the zero solutions the curves approachQ(0)= 1 from
below, and for the other branches they approach it from above.

The case ofd= 3 is of physical interest. All of the curves continue tod= 3. The corre-
sponding values of (A, 0) are given in Table 3.3, divided into the two branches for clarity.

The resulting functions|Q(ξ)| for the curves labeled (0, 1), (0, 2), (0, 3) are plotted in
Fig. 3.9, and the corresponding curves in the (C, D) plane plotted in Fig. 3.10. Similar
figures for the curves (1, 1), (1, 2), (1, 3) are given in Figs. 3.11 and 3.12. Observe that some
of the loops present in these branches whend= 2.01 have opened out whend= 3.

3.2.3. Continuing the solutions as d→ 2. The limit asd→ 2 corresponds to the case
studied in [KL95]. To investigate the behaviour in this case we consider three branches,
namely (0, 1), (1, 1), and (1, 3) in the limit ofd small.

Branch(1, 1). This corresponds precisely to the solution in [KL95] which is constructed
as a perturbation of the ground state forξ <a−1/2 of the slowly varying solution when
ξ >a−3/2, with a matching between these two regimes obtained by comparing the solution
with a parabolic cylinder function. Values of (A, 0) for various values ofd are given in
Table 3.4.

In Fig. 3.13 we plot the resulting solutions|Q(ξ)| together with the ground state solution
and in Fig. 3.14 the same solutions in the (C, D) plane. The rapid convergence towards the
ground state is clear.

TABLE 3.3

0 A (m, n)

0.8399592743 0.3212400792 (0, 1)
0.9716454540 0.1697328431 (0, 2)
0.9982277883 0.1154776778 (0, 3)

1.8856569872 0.9173561430 (1, 1)
1.1166549497 0.2269653116 (1, 2)
1.0211870804 0.1377250206 (1, 3)
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FIG. 3.9. The curves (0,1), (0, 2), and (0, 3) whend= 3.

FIG. 3.10. The phase plane of the curves (0, 1), (0, 2), and (0, 3) whend= 3.

FIG. 3.11. The curves (1, 1), (1, 2), and (1, 3) whend= 3.
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TABLE 3.4

d 0 A

2.01 2.120627441051382 0.3859506507555086
2.001 2.157338250885611 0.2932307852829842
2.0001 2.175013262845138 0.2374712003157395
2.000001 2.190154601923612 0.1730560597671120
2.00000001 2.196333944737588 0.1366120916995973
2.0000000001 2.199490232697582 0.1130409067693504

FIG. 3.12. The phase plane of the curves (1, 1), (1, 2), and (1, 3) whend= 3.

FIG. 3.13. The curve (1, 1) asd→ 2.
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FIG. 3.14. The phase plane of the curve (1, 1) asd→ 2.

Branch(1, 3). For comparison, the values for a multi-bump solution which also bifur-
cates from the ground state are shown in Table 3.5.

In Fig. 3.15 we plot the resulting solutions|Q(ξ)| again compared with the ground state.
We observe that all three solutions are initially close to the ground state, with the region for
which they are close increasing asd approaches 2. This is as predicted by [KL95] in which it
is shown thatQ(ξ) is close toR(ξ) for ξ <1/

√
a asa→ 0. Furthermore, all solutions decay

for large values ofa, again in accord with the predictions of [KL95] forξ >1/a3/2. Where
these solution differ from those considered by [KL95] is in the intermediate behaviour for
which |Q(ξ)| displays a multi-bump phenomenon. If we definey=aξ , a plot of|Q| as a
function ofy is given in Fig. 3.16. In this we can see that the locations iny of the maxima and
minima of |Q(y)| are approximately constant, implying that the multi-bumped behaviour
occurs whenξ =O(1/a) which is between 1/

√
a and 1/a3/2. Note further, however, that

in theξ coordinate, the bumps appear to be translates of each other. A graph of these three
solutions in the (C, D) plane is given in Fig. 3.17.

Branch(0, 1). Finally, the (0, A) values for the first branch bifurcating from the zero
solution are given in Table 3.6.

In Fig. 3.18 we plot the solutions for these values and see a similar phenomenon to that in
the above calculation, viz., that the solutions all look similar, with the bumps appearing to
be invariant apart from a translation asd is reduced. Plotting the solutions againsty=aξ ,

TABLE 3.5

d 0 A

2.01 2.054680413660254 0.108972053473581
2.001 2.178637993258769 0.088084243354237
2.0001 2.200151746863060 0.073266114342636
2.00001 2.203694245603700 0.062877129274365
2.000001 2.204551856643807 0.055232787596050
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FIG. 3.15. The curve (1, 3) asd→ 2.

FIG. 3.16. A rescaling of the curve (1, 3) asd→ 2.

FIG. 3.17. The phase plane of the curve (1, 3) asd→ 2.
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TABLE 3.6

d 0 A

2.01 0.050957837350847 0.166124963113730
2.001 0.007482754125859 0.123033038440185
2.0001 0.001121615461758 0.097998891850343
2.00001 0.000172826027901 0.081700091451878
2.000001 0.000027092964890 0.070188665579905

we see very clearly that the location of the maximum point is almost invariant in this
rescaled variable, again implying that the multi-bumped behaviour occurs forξ =O(1/a)
(see Fig. 3.19). A graph in the (C, D) plane is given in Fig. 3.20.

3.2.4. Scalings as d→ 2. We find from Fig. 3.7 that on all the branchesA decreases
extremely fast asd→ 2. LeMesurieret al. [LPSS88b] and Kopell and Landman [KL95]
used asymptotic arguments to imply that on the branch (1, 1)

d(a)− 2≈ k

a
exp−λ/a asa→ 0, (3.7)

wherek≈ 12.75 could be computed analytically andλ=π . It appears from our calculations
that similar behaviour occurs for the other branches (although the calculation ofk is very
sensitive). Using a least squares fit to calculatek andλ gives the results shown in Table 3.7.

In contrast, a rather different scaling law is observed forQ(0). In particular, on the
branches labeled (0, n) we find that there are exponentsγn and constantskn for which

Q(0) = kn(d − 2)γn .

The resulting values of these are shown in Table 3.8.
An explanation of this scaling phenomenon together with an asymptotic description of

the multi-bump solutions will be given in a forthcoming paper.

FIG. 3.18. The curve (0, 1) asd→ 2.
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TABLE 3.7

(m, n) λ k (m, n) λ k

(1, 1) 3.1412 13.23 (0, 1) 1.2234 2.61
(1, 2) 1.2217 2.45 (0, 2) 1.1019 26.10
(1, 3) 1.1115 30.32 (0, 3) 0.9853 96.32

TABLE 3.8

n γn kn

1 0.8018 1.753
2 0.8669 3.248
3 0.9191 5.213

FIG. 3.19. The rescaled curve (0, 1) asd→ 2.

FIG. 3.20. The phase plane of the curve (0, 1) asd→ 2.
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4. A NUMERICAL ALGORITHM BASED UPON INVARIANT METHODS

The functions calculated in the previous section are all possible candidates for the evo-
lution of the solutions of the nonlinear Schr¨odinger equation, but the analysis gives no
indication as to their stability or indeed the evolution of the solutions of NLS from arbi-
trary initial data. To investigate such a form of blow-up behaviour requires the use of a
sophisticated numerical approach. In this section we describe and analyse such as numer-
ical method for solving the time dependent problem (1.1), and in the next section we use
this method to investigate the stability of the self-similar solutions calculated above. The
method we describe exploits the symmetries of the NLS and has close similarities to the
dynamic rescaling methods developed by Papanicolaouet al.but is rather easier to imple-
ment and has applicability to a wide range of problems. Our formulation is based upon
the scaling invariant moving mesh methods described in [BHR96, BCHR96, BC98] which
have proved very effective for solving a variety of problems involving blow-up in systems
of partial differential equations which exhibit an invariance under rescaling. These methods
involve a method of lines discretisation ofu(r, t) on a moving meshRi (t) determined by
using a relaxed form of equidistribution. The methods are so constructed that any natural
scale invariance in the original problem is automatically inherited by the numerical solution,
and yet they allow a natural incorporation of general initial and boundary values.

4.1. Semi-discrete Approximations

To construct the approximation method we introduce a discrete approximationUi (t) to
u(r, t) at the point,Ri (t). The numberN of mesh-pointsRi (t) is fixed throughout the
computation, but the location of each point changes to allow for a finer mesh close to the
singularity.

To approximate the radially symmetric solutions of the partial differential equation (1.1)
we use a Lagrangian formulation of it in conservation form, viz.,

ir d−1

[
du

dt
− ∂u

∂r

dr

dt

]
+ (r d−1ur

)
r
+ r d−1u|u|2 = 0, (4.1)

with boundary conditions

ur (0, t) = 0, u(L , t) = 0. (4.2)

The latter boundary condition is an approximation to the boundary condition onu at infinity,
andL is taken suitably large and fixed.

Equation (4.1) is discretised in space on the meshRi (t)by representing the approximation
to u(r, t) as a piecewise cubic polynomial, using Hermite cubic shape functions on each
interval [Ri , Ri+1]. Taking collocation at suitable Gauss points within the intervals and
enforcing the exact solution of Eq. (4.1) at these points, we obtain a set ofN differential
equations forUi andRi of the form

A(Ui , Ri )
dUi

dt
+ B(Ui , Ri )

d Ri

dt
+ F(Ui , Ri ) = 0, (4.3)

whereA, B, andF are appropriate nonlinear functions ofUi andRi . Details of this procedure
are given in [HR96].
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The meshRi (t) is determined by equidistribution using a relaxed form of the procedure
described in [DD87]. Supposing thatR0(t)≡ 0 andRN(t)≡ L, the mesh pointsRi (t) are
chosen to equidistribute a monitor function of the solutionM(u, ur )>0. In [DD87] it is
proposed thatRi satisfy the integral condition∫ Ri

0
Mdr = i

N

∫ L

0
M dr; i = 0, . . . , N. (4.4)

A mesh satisfying (4.4) will be said to beequidistributed. This formulation has two dis-
advantages for our purpose. First, it requires a carefully selected mesh at timet = 0. Sec-
ond, it is prone to mesh instability [HR97]. Instead we consider a relaxed form of (4.4)
(called MMPDE6 in [HRR94a, HRR94b]) and require thatRi (t) satisfies the stiff integro-
differential equation

τ Ṙi = −
(∫ Ri

R0

M dr − i

N

∫ L

0
M dr

)
, i = 0, . . . , N. (4.5)

It is convenient for the derivation and analysis of this method to considerRi (t) as discrete
values of a continuous mesh functionR(ξ, t) so thatRi ≡ R( i

N , t). Hereξ is a “computa-
tional” coordinate in the fixed interval [0, 1]. Differentiating (4.5) twice with respect toξ

gives [HRR94a]

τRtξξ = −(M Rξ )ξ . (4.6)

For a given functionM , Eq. (4.6) can be discretised using a simple three-point finite
difference with equally spaced values ofξ . This yields a set of ordinary differential equations
for Ri (t) of the form

τCṘi = D(Ri ,Ui ), (4.7)

where D depends onRi ,Ui through the monitor functionM . An elementary but very
revealing calculation gives the natural time scale for the evolution of the mesh under the
action of this differential equation. Suppose that1 is the “relaxation-time” under which
macroscopic changes of the mesh occur. Then by considering the dimensions of similar
quantities in (4.6) we have that

1 ∼ τ

M
. (4.8)

If τ is small andM is large, the mesh evolves rapidly. This result is crucial in our subsequent
analysis of the performance of the method.

To implement the method, the two systems of Eqs. (4.3) and (4.7) are solved simultane-
ously using a BDF method (in particular the stiff integration package DDASSL [Pet82]).
We observe that this method is convenient to use, and while it does not generally inherit
the symplectic structure of the time-evolution of the PDE, it is unlikely that the discrete
Eqs. (4.3) and (4.7) are themselves Hamiltonian, thus somewhat reducing in advance the
effectiveness of using a Hamiltonian integrator. To maintain the accuracy of the temporal
integration we use high relative and absolute tolerances in the ODE integration package
and constantly monitor the error estimates throughout the integration procedure.
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4.2. Invariant Meshes

Both the PDE (1.1) and its transformed form (4.1) are invariant under translations in
time, space, and the scaling transformations in (2.5) and (2.6). All of these transformations
are important in the resulting dynamics of the solution, and it is thus highly desirable
that this invariance is reflected in the numerical scheme. We argue that as the scaling
invariance dominates the formation of the singularity, a scaling invariant numerical scheme
will also resolve the singularity effectively. To achieve this invariance we insist that if
(Ui (t), Ri (t)) is a solution of the discrete equations then so should be the rescaled solution
(λ−1/2Ui (λt), λ1/2Ri (λt)), provided that we exclude the boundary condition atRN . A simple
calculation shows that the differential equation (4.3), which is derived directly from the
PDEs, automatically inherits all the required scaling properties. However, to have a solution
of (4.5) which is also invariant requires a careful choice of the monitor functionM . Under
the scaling transformation, (4.5) becomes

λ−1Ṙξξ =
[
M
(
λ−

1
2 u, λ−1ur

)
Rξ
]
ξ
,

and hence to obtain scaling invariance we require thatM(u, ur ) satisfy

λM
(
λ−

1
2 u, λ−1ur

) = M(u, ur ). (4.9)

The simplest monitor function satisfying (4.9) is

M(u, ur ) ≡ |u|2. (4.10)

A more subtle monitor function which gives better resolution of a varying curve but has
similar invariance is

M(u, ur ) =
√
α|u|4+ β|ur |2. (4.11)

We use both (4.10) and (4.11). Observe thatM is large whenu andur are large. Conse-
quently, more mesh points will be placed near singularities. The system (4.3) and (4.7)
with M given by (4.10) or (4.11) describes a dynamical system which, apart from the right
boundary condition, is scaling invariant. Such a system admits numerical self-similar solu-
tions, mimicking the analytic solutions of the previous section. In particular, the numerical
scheme admits solutions of the form

Ui (t) = (2a(T − t))−
1
2 exp

(
− i

2a
log(T − t)

)
Qi , Ri (t) = (2a(T − t))

1
2 Yi , (4.12)

whereQi andYi are independent of time. The functionQi is automatically a discretisation
using collocation of the continuous functionQ(y) on the non-uniform meshYi . The nu-
merical scheme automatically preserves self-similar structure when it exists and finds the
correct coordinate transformation in such a case. However, it is important to note that we
do not impose a self-similar (or indeed any other) structure upon the solution, and the nu-
merical method can start from arbitrary initial data. A desirable (but very difficult to prove)
property of the scheme is that the stability properties of any self-similar solution should be
inherited. We have observed this numerically in all of our experiments (cf. Section 5).
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When implementing the numerical method it is found that using the system (4.7) can
lead to instabilities. This is because, with a fixed number of mesh points, too many points
are placed in a neighbourhood of the singularity and too few are placed near the boundary
points. To prevent this, a smoothing of the monitor function is used so that ifMi is the value
of M at the pointRi then we replaceMi in the finite difference discretisation of (4.7) by

M̃i =
√√√√[ i+i p∑

k=i−i p

(Mk)2

(
2

3

)|k−i |]/[ i+i p∑
k=i−i p

(
2

3

)|k−i |]
, (4.13)

wherei p is a user-defined, smoothing parameter.
The effect (4.13) is to preserve the symmetry invariance close to the point of singularity

but to gradually weaken it nearer the boundary.

4.3. Analysis of the Scheme

We now briefly analyse the performance of the resulting schemes whend> 2 by consider-
ing how well they capture the behaviour of a singularity evolving in the self-similar manner.
At a time t close to the blow-up timeT , the solution undergoes macroscopic changes in a
time-scale of order (T − t). In comparison, the relaxation time for the mesh is1= τ/M .
If M = |u|2 then this gives

1 = τ/|u|2 = τ L2 = τ(T − t),

with an exactly similar result forM =
√
α|u|4+β|ur |2. If τ is small, the mesh relaxes on

a time scale which is small compared to the natural problem time scale, but it scales in the
same way as the original solution, giving it excellent stability properties. As a result the
mesh converges rapidly to, and stays on, the equilibrium manifold. On this manifold we
have from (4.4) that ∫ Ri

0
M dr = i

N

∫ L

0
M dr,

so that ifM = |u|2∫ Ri

0

1

2a(T − t)

∣∣∣∣Q( r

2a(T − t)

)∣∣∣∣2dr = i

N

∫ L

0

1

2a(T − t)

∣∣∣∣Q( r

2a(T−)
)∣∣∣∣2 dr.

Thus ∫ Ri /(2a(T−t))1/2

0
|Q(y)|2 dy= i

N

∫ L/(2a(T−t))1/2

0
|Q(y)|2 dr

≈ i

N

∫ ∞
0
|Q(y)|2 dy ast→ T. (4.14)

Defining the functionJ(z) by

J(z) =
∫ z

0
|Q(y)|2 dy, (4.15)
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we have

Ri = (2a(T − t))1/2J−1

(
i

N
J(∞)

)
≡ (2a(T − t))1/2Yi . (4.16)

The formula (4.16) then gives the mesh for values ofi for which i /N is not close to one.
Indeed, ifi /N is small then

Ri ≈ (2a(T − t))1/2
i

N

J(∞)
|Q(0)|2 , (4.17)

so thatRi scales exactly as the transformed coordinate of the self-similar solution, with the
mesh points distributed uniformly within the evolving singularity.

In contrast, asi→ N we have thatYi →∞, and a more careful calculation using the
approximation|Q(y)| ∼ α/y gives

1

Ri
∼ 1

L
−
(

1− i

N

)(
J∞

α(2a(T − t))1/2
− 1

L

)
, (4.18)

and hence asi→ N

Ui ∼ 1

(2a(T − t))1/2
α

L
−
(

1− i

N

)(
J∞

(2a(T − t))1/2
− α

L

)
. (4.19)

In practice, however, the effects of smoothing and of the truncated boundary condition act
to distort the formulae (4.18) and (4.19) ifi is very close toN.

5. NUMERICAL COMPUTATIONS OF TIME DEPENDENT SOLUTIONS

In this section, we use the moving collocation method mentioned above to solve (1.1)
in three dimensions with a variety of initial conditions. Our purpose is to investigate the
stability of the self-similar solutions computed in the previous sections. In particular, we
consider taking both monotone and non-monotone initial data.

5.1. Monotone Initial Conditions

For our initial calculation we takeL = 5 and

u(r, 0) =
{

6
√

2e−r 2
, if 0 ≤ r ≤ 5,

0, if r > 5.
(5.1)

This problem has been considered by many authors (see [MPSS86, TS92, ADKM92]).
McLaughlin et al. [MPSS86] computedT ≈ 0.034301966. Furthermore, Akriviset al.
[ADKM92] by using a refined Galerkin-finite element method demonstrated that the blow-
up behaviour was indeed self-similar.

To apply the method described in the previous section we choose the monitor function
to be

M(r, t) =
√
|u(r, t)|4+ 2|ur (r, t)|2, (5.2)

takeτ = 10−6, use a spatial smoothing parameteri p= 5, and setN= 81. Since the error
tolerance for the time integration is sensitive for problems with singularities, it must be
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TABLE 5.1

N Monitor function atol Blow-up time

81
√

2|ur |2 + |u|4 10−9↗ 10−6 0.0343013614238

91 |u|2 10−9↗ 10−5 0.0343013710865
61 |u|2 10−9↗ 10−5 0.0343013774962

chosen carefully. While a small error tolerance gives more accurate solutions, if the tolerance
is too small the CPU time can become excessive and cause breakdown earlier than desired
near blow-up. Here we choose the relative tolerance to bertol= 10−9 and the absolute
tolerance to change according to the maximum value of|u|, viz.,

atol= 10−9 if |u(0, t)| ≤ 1000,

atol= 10−8 if 1000< |u(0, t)| ≤ 30,000,

atol= 10−7 if 30,000< |u(0, t)| ≤ 150,000,

atol= 10−6 if 150,000< |u(0, t)|.

Using these parameters, we can reach a maximum computed value of|u(0, t)| =920,000
for t = 0.0343013614215. To obtain the blow-up time, we use a nonlinear least squares fit
by evaluatingu(0, t j ) at a series of timest j and then consider the problem

minimize
m∑

j=1

[log(A/
√

T − t j )− log(|u(0, t j )|)]2. (5.3)

Herem corresponds to the time spread of the numerical computation, and its value is 2960
for which |u(0, t j )| varies from 6800 to 920,000. The best least squares fit is given by
A= 1.3918 andT = 0.03430136142381, implying that|u(0, t)| ∼1.3918/

√
T − t (notice

that the self-similar solution|u(0, t)| = Q(0)/
√

2a(T − t) ≈ 1.3921258/
√

T − t in (2.7)).
The numerical computations indicate that both the blow-up timeT and the phase shiftθ

are relatively insensitive to the number of mesh points and the precise monitor function. In
Table 5.1 we demonstrate this by calculatingT for three sets of parameters.

In Fig. 5.1 we illustrate the development of the singularity by plottingu(r, t) for several
values oft→ T .

FIG. 5.1. Development of the singularity when|u(0, t)| =100, 500, 100,000, and 500,000.
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FIG. 5.2. |u(xi , t)|/|u(0, t)| versusi when|u(0, t)| =100, 500, 2500, 10,000, 100,000, and 500,000.

In Fig. 5.2, we plot|u(Ri , t)|/|u(0, t)|as a function of the node indexi , for |u(0, t)| =100,
500, 2500, 10,000, 100,000, and 500,000. These curves are almost invariant as|u(0, t)|
increases. This is precisely what would be expected of a self-similar solution and strongly
implies that the numerical method has automatically identified the correct scaling properties
of the solution.

In Fig. 5.3, we plotRi |u(0, t)| against|log(T − t)| for i = 2, . . . ,13. From (4.16) it
follows that for a solution evolving in a self-similar manner we should have

Ri |u(0, t)| ∼ Yi |Qi | which is independent oft for large values of|u(0, t)|.

This behaviour is confirmed by the figure, and we see further that the mesh points are
distributed locally uniformly as predicted by (4.17).

We now compare the computed solution with the exact self-similar solution (2.7) derived
from the solution of (2.8) on the branch (1, 1) in the cased= 3. To do this we look at
solutions both starting from the Gaussian initial function and also from the two further
initial functions

u(r, 0) =
{

6
√

2/(1+ r 2), if 0 ≤ r ≤ 200,

0, if r > 200,
(5.4)

FIG. 5.3. Ri |u(0, t)| versus| log(T − t)|.
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TABLE 5.2

Initial value Line N Monitor function atol Blow-up time

(5.1) Solid line 81
√

2|ur |2 + |u|4 10−9↗ 10−6 0.03430136142

(5.4) Dotted line 141 (1+ r )
√

2|ur |2 + |u|4 10−5↘ 10−7 0.03561777658

(5.5) Dashed line 81
√

2|ur |2 + |u|4 10−9↗ 10−5 0.08971350508

and

u(r, 0) =
{

6/(1+ r 2)4, if 0 ≤ r ≤ 10,

0, if r > 10.
(5.5)

The first, (5.4), is called the Lorentzian initial condition. Since the initial value 6
√

2/(1+r 2)

approaches 0 relatively slowly asr→∞, we must use the large computational domain
[0, 200]. We choose the monitor function to beM = (1+ r )

√
|u|4+ 2|ur |2 so that the

mesh points are distributed more uniformly forr > 1 compared with those generated by
M =

√
|u|4+ 2|ur |2, but so that scaling invariance is still retained for smallr . The blow-up

times estimated by using the least squares method for these initial functions are given in
Table 5.2.

Here,atol is the absolute tolerance. The blow-up time is estiamted using the least squares
fit procedure described above.

According to (2.7) the phaseφ of u(0, t) is given asymptotically by

φ = θ + 1

2a
log(T/(T − t)),

soφ is asymptotically a linear function ofτ ≡−log(T − t) with gradient 1/2a. Figure 5.4
shows the three curves ofφ for the three initial functions. Asymptotically these are all
straight lines with almost identical slopes of approximately 0.5450 giving aa≈ 0.9173,
which is precisely the value determined earlier.

FIG. 5.4. The phaseφ versus|log(T − t)| for the three curves (see Table 5.2 for the initial conditions and the
corresponding lines).
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FIG. 5.5.
√

2a(T − t)|u(0, t)| versusτ = log(T/(T − t)) with three different initial values (see Table 5.2).
The vertical direction is enlarged nearQ(0) on the right.

In Fig. 5.5 we see the convergence of the rescaled function
√

2a(T − t)|u(0, t)| plotted
againstτ = log(T/(T − t)) using the value ofa estimated above. All three curves approach
1.88566, which implies that the amplitudes of all three solutions at the origin asymptotically
approach the corresponding values of the exact self-similar solution (2.7) ast→ T , confirm-
ing the stability of this function. Observe that the three initial functions lead to similar decay
rates, implying that the rate of asymptotic convergence toward the self-similar solution does
not depend upon the initial data—rather on the local linearisation about the self-similar so-
lution of the NLS in the rescaled variables. From a careful analysis of the figures it appears
as though the decay rate isO((T − t)1/2) so that we conjecture that in the limit

u(0, t) = Q(0)√
2a(T − t)

+ C +O((T − t)1/2),

where the value of the constantC probably depends upon the initial conditions.
The global stability of the (1, 1) branch of self-similar solutions persists asd is reduced

to 2. To see this, we choose the initial value (5.1) and taked= 2.5, 2.01, and 2.001. The
corresponding rescaled solutions are plotted in Fig. 5.6, where we can see that the curves

FIG. 5.6.
√

2a(T − t)|u(0, t)| versus log(T/T − t) for d= 2.5 (solid line),d= 2.01 (dash-dotted line), and
d= 2.001 (dashed line).
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FIG. 5.7. Re(u(r, t)) and Im(u(r, t)) versusr for t = 0.03429384648(|u(0, t)| =500) on the left and
t = 0.03430106161(|u(0, t)| =2500) on the right.

approach the corresponding values ofQ(0) ast→ T with the rate of convergence slowing
down markedly asd→ 2.

Taking the initial function (5.1), we now compare the solution curves as functions ofr
with the exact self-similar solution at three values oft < T for which|u| takes the respective
values 500, 2500, and 100,000. In each case the phaseθ of the self-similar solution (2.7)
is chosen in such a way that the exact solution and the numerical solution have the same
phase at the origin.

The real and imaginary parts of the numerical solution and the self-similar solution are
given in Figs. 5.7 and 5.8 for three different times by using the initial values (5.1). Solid
lines represent the numerical solutions and dotted lines represent the exact solutions (2.7).
From the above figures, we can see that the corresponding curves converge ast→ T .

5.2. Non-monotone Initial Data

We now look at the effects of taking non-monotone initial data. The purpose of this
calculation is to examine the stability of the self-similar solutions calculated in Section 3. To
do this calculation we define an a priori blow-up time ofT = 0.1 and takeθ = 0. Substituting
these values into (2.7) witht = 0 we obtain an initial function corresponding to the exact self-
similar solution (apart from a perturbation at the boundary). Then we solve problem (2.1)
with this initial function and compare the results with the exact self-similar solutions (2.7).

FIG. 5.8. Re(u(r, t)) and Im(u(r, t)) versusr for t = 0.03430136123(|u(0, t)| =100,000). The left figure is
the leading part of solutions and the right figure is the middle part of solutions.
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FIG. 5.9.
√

2a(T − t)|u(0, t)| versus log(T/(T − t)) for branch (0,1).

First, we consider the branch (0, 1) withd= 3. On this branch,a= 0.3212, Q(0) =
0.8399, and hence

|u(0, 0)| = 3.3137.

In Fig. 5.9 we plot the amplitude of the rescaled numerical solution
√

2a(T − t)|u(0, t)|.
This clearly stays close toQ(0) for some time before diverging, implying that the (0, 1)
branch is mildly unstable. Indeed,u(r, t) remains close to the self-similar solution at least
until |u(0, t)| =100, retaining the multi-bump profile. In Fig. 5.10 we plot|u(r, t)| against
r for |u(0, t)| =100(t = 0.09989) and|u(0, t)| =2500(t = 0.09999817). The dotted line
represents the exact self-similar solution (2.7) for the same time. In the latter figure it is
clear that the multi-bump profile has evolved into the monotone profile characteristic of the
blow-up profiles of the previous section.

Now we consider the branch (1, 2). Ford= 3 we havea= 0.2269 andQ(0)= 1.1166.
We note that whereas the solution branch has 2 bumps ford close to 2, the solution atd= 3
is monotone. In Fig. 5.11 we again plot the rescaled numerical solution at the origin and
compare it withQ(0). Again we see that the two solutions are initially close, but the (1, 2)
solution is rather more unstable than the (0, 1) solution.

FIG. 5.10. |u(r, t)| versusr for |u(0, t)| =100 on the left and for|u(0, t)| =2500 on the right.
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FIG. 5.11.
√

2a(T − t)|u(0, t)| versus log(T/(T − t)) for branch (1,2).

We conjecture that all of the further branches of self-similar solutions are unstable, with
the degree of instability increasing with the number of bumps in the solution profile.

6. CONCLUSIONS AND FURTHER WORK

The results reported in this paper demonstrate that although the self-similar solution
determined in [LPSS88a] is apparently globally attracting, it is not unique. Instead there are
an infinite number of unstable self-similar solutions which bifurcate either from the ground
state or from the zero solution whend= 2. The unstable self-similar solutions play a role in
the transient dynamics of the evolution of the blow-up solutions and are thus worth studying
in more detail. The scaling invariant numerical methods we have developed are effective in
computing the dynamics of the solutions starting close to one of these self-similar states. In
a future paper we will investigate their asymptotic properties asd→ 2 and will also consider
the effect of using scaling invariant numerical methods in the special case ofd= 2.
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