Journal of Computational Physi&é§2,756—789 (1999)

®
Article ID jeph.1999.6262, available online at http://www.idealibrary.conl DE &l.

New Self-Similar Solutions of the Nonlinear
Schrdédinger Equation with Moving
Mesh Computations?

Chris J. Buddf-? Shaohua Chehand Robert D. Russell

*Department of Mathematics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom;
tDepartment of Mathematics and Statistics, Simon Fraser University, Burnaby,
British Columbia V5A 1S6, Canada
E-mail: cjp@maths.bath.ac.uk, schend@cs.sfu.ca, rdr@cs.sfu.ca

Received November 20, 1998

We study the blow-up self-similar solutions of the radially symmetric nonlinear
Schiodinger equation (NLS) given biu; + u;r + %ur +ulul?, with dimension
d > 2. These solutions become infinite in a finite tiMe By a series of careful
numerical computations, partly supported by analytic results, we demonstrate that
there is a countably infinite set of blow-up self-similar solutions which satisfy a
second order complex ordinary differential equation with an integral constraint. These
solutions are characterised by the number of oscillations in their amplitudedvhen
is close to 2. The solutions are computed as functions and their behaviour in
the critical limit asd — 2 is investigated. The stability of these solutions is then
studied by solving the NLS by using an adaptive numerical method. This method
uses moving mesh partial differential equations and exploits the scaling invariance
properties of the underlying equation. We demonstrate that the single-humped self-
similar solution is globally stable whereas the multi-humped solutions all appear to
be unstable. (© 1999 Academic Press
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1. INTRODUCTION
The cubic nonlinear Schdinger equation (NLS)

. ou
|ﬁ+Au+|u|2u:0, t>0 (1.1)
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u, 0) =ug(x), xeR (1.2)

describes many physical situations, including phenomena in nonlinear optics and ple
physics (see [Ha89, Za84]). For the well studied case ef 1, the equation is integrable
and a solution exists globally. & > 2 then for some initial conditions, such as those fc
which the invariant energy

1
E= / (|Vuo|2 - —|Uo|4> dx <0, (1.3)
ad 2

the NLS has solutions that become singular in a finite timdn this case the solution
becomes infinite at a single point at which there is a growing and increasingly narrow p
In plasma physics, the singularity is usually called a collapse, and in nonlinear optics
singularity corresponds to an extreme increase of the field amplitude due to self-focu:
There is considerable interest in the nature of the behaviour of this peak and many au
(see [ADKM92, FP98, Fi96, TS92, LPSS88a-LPSS88c, MPSS86]) have investigatec
structure of the singularity both numerically and analytically. These investigations h
usually considered the case of radially symmetric solutions which are functions pf
where the singularity occurs at=0. In an important series of papers, LeMesugeal.
[LPSS88a, LPSS88b] and Landmetral.[LPSS88c] have used a numerical method derive
from rescaling properties of the underlying equation cathgaamic rescalingThis method
has proved successful in both calculating the blow-up rate and giving significantinforma
about the shape of the singularity. In dimens#a: 3 (and indeed for all 2 d < 4 for
radially symmetric solutions), the overwhelming evidence is that the solutions blow uj
a self-similar way so that there is a functiQi¢) and a scalaa for which

U(r, t) — (Za(T . t))fl/zei0+i |Og(T/(T7t))/2aQ(X/(2a(T _ t))l/Z)

Here the functiorQ(¢) satisfies an ordinary differential equation with an integral constrai
and the unknown scalarplays the role of a nonlinear eigenvalue. In contrast, in dimensi
2 the numerical and asymptotic evidence is that the blow-@psoximatelyself-similar
with

2

llulle proportional to((T —t)/log IogT ! t) . (1.4)

Fibich and Papanicolaou [FP98] confirmed the log log lavdfer2 and showed asymptotic
equivalence of the adiabatic law of Fibich and Malkin and the loglog law. They also obtail
several formulas to approximately calculate the blow-up finead discussed more genera
perturbed nonlinear Sobdinger equations. The value df=2 is a critical point in the
analysis of (1.1) with qualitatively differnt behaviour occurring for the three casgs<df,
d=2,andd > 2.

In this paper we make a further analysis of the radially symmetric self-similar solutic
inthe case of Z d < 4. Our principle result will be a numerical demonstration of an infinit
number of distinct self-similar solutions which are characterised by the number of max
of the function|Q| whend is close to 2. These solutions are all parametrised laynd
exist whend = 3. For this particular value we study their stability by solving the parti:
differential equation (1.1) numerically. The numerical method used is a developmer
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the scale invariant moving mesh PDE methods described in [BHR96]. These method:
closely related to dynamic rescaling technigues, but are rather more general and eas
implement. Using these we demonstrate that the blow-up profiles in W@ids monotone
whend =3 (computed in earlier papers) are globally stable, whereas the multi-bum
profiles represent unstable self-similar solutions.

The layout of the remainder of this paper is as follows. In Section 2 we review some of
existing theory for problem (1.1), derive the ordinary differential equation satisfied, by
and establish some analytic properties of the solutions. In Section 3 we solve the ordi
differential equation numerically and demonstrate the existence of a countably infinite
of multi-bumped solutions. In Section 4 we describe the underlying theory of the sc
invariant moving mesh methods used to compute the solutions of (1.1). In Section &
use this method to investigate the stability of the self-similar solutions derived in Sectio
Finally in Section 6 we draw some conclusions from this work.

2. SOME IDENTITIES AND AN EXISTENCE THEOREM FOR THE EQUATION

SATISFIED BY THE SELF-SIMILAR SOLUTIONS

If we taker =|x| and consider radially symmetric solutions of (1.1) only, then the:
satisfy the partial differential equation

du 9°u d-—14u )

o Taz T T

- 2.1
5 u=0, (2.1)

whereu is complex-valued. For all> 0 this partial differential equation has two invariants
of evolution which are the mass

Pz/ lu(r, t)|?rd=1dr (2.2)
0
and the energy

au(r,t)
or

[

A particular class of global solutions of (2.1) is the so-calleVeguide solutions(u, t) =
€tR(r), whereR(r) satisfies

2 1
- e, t)|4> rd=ldr. (2.3)

R'(r) + dr;lR/(r) —R(r)+R3(r) =0, R'(0) =0, R(c0)=0. (2.4)

Equation (2.4) has a unique, monotonically decreasing and positive solution [MS81] ce
the Townes solitorwhich plays an important role in the analysis of (2.1) in the limit o
d — 2. Using the waveguide solution, one can construct an exact solution of (2.1) wi
blows up in a finite timél and is of the form

1 r r2/4+1
ur,t) = ——R( =—— | exp _i/7+ .
T-—1t T -t Tt
However, this solution is unstable and has not been observed in numerical computa
(see [LPSS88b]).
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Now, if A is any real number then Eq. (2.1) is invariant under the transformations
u—€e*u (2.5)

or
t — At, r — AY?r, u— 1" Y2y, (2.6)

Motivated by these invariances we seek blow-up self-similar solutions of (2.1) which t
the form

u@,t) =

1 . i T r
mexp<|6+klogT_t>Q(m>. (2.7)

At this stagea is an undetermined real number afhds a fixed phase shift. Substituting
(2.7) into (2.1) we find that the functio® (&) satisfies the following ordinary differntial
equation:

d-1 .
Q55+TQ5 - Q+ia Qe +1QPQ =0, (2.8)

Q:(0) =0, Q(0) =real Q(oo0) = 0. (2.9)

The resulting invariant® and E then become

P=(T-t@2 / OO|Q<§)|2§d*1ds, (2.10)
0
00 2
E=T-0"“9 / (’@ - }IQ(E)I“) g9 de. (211)
0 & 2

If we define

1 /]0Q6)
H(Q):./o < 9%

then if 2<d < 4 and the energ¥ of the solution is finite, the self-similar solution must
have unboundetl, norm and satisfy the constraint

2 1
— 2IQ(E)|4> g9 de, (2.12)

H(Q) = 0. (2.13)

This form for a self-similar solution was given originally in [Za84]. The problem of findin
a self-similar solution is thus reduced to finding a functi@(¢) and a scalaa which

together satisfy the ordinary differential equation (2.8), (2.9), and the constraint (2.
Solutions of this ordinary differential equation for whig| is monotone decreasing have
been calculated in [LPSS88b], and it has been reported that the equation with the cons
has a unique solution. These numerical calculations imply thata® we havea — 0 and

Q — R. An existence proof together with a demonstration of local uniqueness for both
functionQ(¢) anda in the limit of d — 2 is given in [KL95]. Numerical calculations using
the dynamic rescaling method whedn=3, strongly imply that the monotone decreasin
solution represents a globally attracting form of behaviour, so that the blow-up solution
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the initial value problem when rescaled tend towards the funci¢gn from a variety of
initial states.

In this paper we give numerical evidence which implies that problem (2.8), (2.9),
(2.13) has an infinite number of solutions for whig@(¢)| is non-monotone and which
under transformation are unstable blow-up solutions.

We first obtain some useful identities and obtain the decay rate for the solutions of (2.8
2 <d < 4. Wang [W90] proved that the initial value problem (2.8) and (2.9) has a soluti
Q(&) with |Q(&)| < ce 1 for anya whend = 3. We show that this result can be generalize
for anyd > 2. In fact, we can prove that, for agy> 2, a > 0, andQ(0), problem (2.8) and
(2.9) has a unique solution.

LEMMA 2.1. If Q(&) is a solution of(2.8) and (2.9), then
1 &
£Q + QP+ 36701 + [ siqltds
&
=(d—2)|Q(0)|2+€2|Q|2+(3—d)|Q|2+2(3—d)/0SIQ’(S)IZd& (2.14)
_ & _
26Im(Q'Q) +2(d — 2)/0 Im(Q'Q) ds+ a&?|Q(§)1? =0, (2.15)
and
d 72 2 d—1 7 - 1 d 4 d—1 7~
Q1 - _£ImQ'Q + S£°1QI + %7 'Re(Q'Q)
&
= (4-d) / (IQ/(S)IZ— %IQ(S)I“) s*ds (2.16)
0

Proof. Multiplying (2.8) by (& Q+Q)withk=1andk=d —1, respectively, taking
real parts and integrating the results gives (2.14kferl and

1 _
£9Q 17 —&QI2 + ésdmr‘ + 269 'Re(Q'Q) — (4—d)
& &
/0 (|Q’(s>|2 - ;IQ(S)I“) silds+ (d — 2)/0 s 1Q(9)Pds=0 (2.17)

for k=d — 1. Similarly, multiplying (2.8) by 2KQ with k =1 andk =d — 1, respectively,
taking imaginary parts, and integrating the results give (2.15 fed and

3 _
ad -2 / SQE)Pds = ag®|QE) 2 + 269m(Q'Q) (2.18)
0

for k=d — 1. Finally, substituting (2.18) into (2.17) gives (2.16m

THEOREM 2.2. If 2<d <4, then for any given initial value @) and constant & O,
problem (2.8) and (2.9) has a unique solution. FurthermorgQ(#)|<c&~! and
|Q' (&) <ce~“forlargeé, wherea =1ifd >3andO0O<a <d—2ifd < 3.
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Proof. The problem is equivalent to the following integral equation:

. 1
QE) = Q) —ia /SQ(S)dSvLm

dl
gdz

From the theory of \Volterra integral equations (see [Bu83]), (2.19) has a unique Ic
solution and can be extendedée- oo if |Q(&)] is bounded.
Now it suffices to prove thaQ| < c&~! and|Q'(£) < c&~*. Rewrite (2.14) as

2
+ IQIZGIQI2 - 1)
1

<1+d 2)|Q| +1/lés|Q(s)|4ds
g2 £2 Jo

d2 2(3 d)

&
< /0 [(1+iad—ia)—IQ(S)IZ]Q(S)< )da Qoo) = 0. (2.19)

72 ’ Q
1-9)Q] +8’Q +§

/ s|Q'(s)*ds, (2.20)

where 0< § <d — 2. From this identity we see that|iQ’| is bounded so i$Q|. Suppose
that|Q’| is unbounded. Then there exists a monotone sequgrsueh thaiQ'(&j)| — oo
as&j — oo and|Q'(§j) > |Q'(§)| for &j > &. From (2.20),

2(3—d)
2

&j
AL-8IQENIP <c+ /O sIQ(®Pds<c+ (3B —d)|Q )3

which is a contradiction ag— oco. Hence|Q| and|Q’| are bounded. By (2.15) we have

ag%|Q(&)I% < c&,

which implies| Q(¢)| < c& /2. Successively substituting this and updated estimates ir
(2.15) we obtain

1Q(&)] < &, (2.21)

where 0< ¢ < d — 2. Multiplying (2.20) by£2* with 0 <« < (d — 2) /(1 — §) we have

(1-8&*|QP <C+ )/SIQ(S)I dS<C+% maxs|Q(s)|

which implies that ifd < 3 then2*|Q’|? < ¢ by a similar argument as before. Substituting
this inequality and (2.21) into (2.15) we obtai@| < c& L.

If d >3, we obtain Q| < c&~* directly from (2.14). =

LEMMA 2.3. Suppose that Q is a solution ¢2.8) and (2.9) and 2<d <4, then
H(Q)=0iff

‘EQ’ + <1+ ;) Q’ -0 ast — oo (2.22)
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Proof. Rewrite (2.16) as

sd—Z

2 1 1\12 1\? 1
g 100 (1) - (14 2) 7

§ 1
=(4-d /0 (IQ’(S)IZ— §|Q<s>|4)sd—lds (2.23)

, i
fQ'+ (1430

and the conclusion follows on lettig— co. =

3. APLETHORA OF MULTI-BUMP SELF-SIMILAR SOLUTIONS

From Theorem 2.2 in Section 2 we have that the initial value problem consisting of (2
Q'(0) =0, andQ(0) given has a unique global solution such th@t¢)| — 0 asé — oc.
The solutions of the initial value problem which correspond to self-similar solutions of 1
partial differential equation satisfy the integral identity (2.13), and from Lemma 2.3 we
that this is equivalent to the point condition (2.22).

An alternative derivation of this result follows from the observation that for largieere
are constante and 8 which depend upon the initial conditions and for whiGt¢) is
asymptotic to

1 i _d-1) iag? i
Q) ~ ak exp(—g Iog(é)) + B& exp(—T +3 Iog(%)). (3.1)
Observe that this comprises a slowly oscillating solution added to a more rapidly decay
but rapidly oscillating component. A simple calculation then implies that wéhisnarge
the leading order contribution to (2.22) is given by

2

’ng + (1+ %) Q| =Iplfa%t ™, 3.2)

and hence the solutions of (2.8), (2.9), and (2.22) are precisely those which oscillate sl
as¢ — o if |B|=0.

We present numerical evidence which strongly indicates that there anéirsite num-
ber of multi-bump non-zero solutions of (2.8), (2.9), and (2.22). These lie on solut
branches parametrised tysuch that ad — 2, a— 0 on each branch and eithéx0) — 0
or Q(0) — 2.20620086465 which is the value &t 0 of the ground state solutioR(&).
The branches are characterised by the number of oscillations of the fup@ién and
are reminiscent of the multi-bump homoclinic solutions of real fourth order ordinary diffe
ential equations derived by Buffoni, Champneys, and Toland [CT93, BCT96]. The bra
identified by Papanicolaou and co-workers in [LPSS88Db] is that for which the funct
|Q(&)] is monotone decreasing & whend is close to 2.

3.1. Numerical Methods

We use two numerical methods to solve the system (2.8), (2.9), and (2.22). The |
based upon a shooting method, is robust in the sense that it will find a solution given a f
poor initial guess forQ(0) anda. The second, based upon collocation, requires a go
initial guess forQ(¢) but is significantly faster and more accurate. Typically, we use it
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follow a branch of solutions ag varies, once a starting solution on the branch has be
found by the shooting method.

First we describe the shooting method. Consider the initial value problem (2.8) with gi
reala andy = Q(0). This has a solutioQ(&, a, y) valid for all £. This solution can be
constructed relatively easily using a standard ordinary differential equation solution met
As the slowly varying solution we are seeking is close to highly oscillatory solutions, i
important that it be approximated well. This requires the use of a stiff solver with high el
tolerance. Accordingly, we use a BDF method with relative tolerance of*10 solve the
initial value problem.

Using this we solve foQ (&) in the range G< & < X for a suitably largeX and calculate
the function

F(X,a,y) = IXQ + (L +i/0Q(X)%. (3.3)
To enforce the condition thgt= 0 we approximate the condition that
F(X,a,y) —> 0 asX — oo (3.4)
by taking X large and finding values @ andy such that
F(X,a,y)=0.

This introduces an error which we shall show presently is small providedthisisuffi-
ciently large. Settindg= =0 is equivalent to finding a (local) minimum &f over a range
of values ofa andy. According to the theory presented in [KL95], the solutions of (2.8
(2.9), and (2.22) arkocally unigue. Such points lead to valuesaoéndy which are local
minimisers ofF (X, a, y). We define such points to b&(X), I'(X)), and each such point
leads to a solution of (2.8), (2.9), and (2.22) provided thas zero at the local minimum
and A(X), I'(X) have limiting values aX — co. Whereas earlier calculations reported ir
[KL95], LPSS88b] claim uniqueness for the valukeX), I'(X) in the limit of X — co we
believe there to be an infinite number of such isolated points. To determine them we us
following algorithm:

ALGORITHM 1.

SetX large (typicallyX is in the range of 200 to 1000).

Take an initial gues&, y) for (A(X), I'(X)).

Starting from the initial guess, find a local minimiséx(K), I" (X)) for F.
IncreaseX and repeat till convergence.

To perform the minimisation, we used a Broyden method (the NAG routine E04J/
which performed robustly for a variety of initial guesses. Indeed, this procedure provec
more robust to errors in the initial guess than using a nonlinear solver to find the zerc
F. Typically the minimisation terminated whéh< 10~%5.

The values ofA(X), I"'(X) so derived converge rapidly as the valueahcreases which
makes the procedure reasonably quick to implement. To see this, we continue the estin
of the slowly varying solutiorQ(¢) for large&. A simple calculation shows that there is &
constantK which depends upoa anda such that

1 i K _d-1) iag? i
Q(§) ~aé exp(—a Iog(g)) (1+ 52> + B& eXp<—2 *t3 |09(§)>- (3.5)
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(It can be shown that whemis small,K is inversely proportional t@?.) Using (3.5) we
can further estimat€ to give

2

. i 2 i i
F(X,a,y) ~ |—iagx?@-1-1/a exp(—laz>< > + % (l+ ;) exp<—;1 Iog(X))

We see from this estimate thathf=0 then

Ka 46
I8l ~ ?X :
Observe that the resulting value pfs non-zero, but provided < 6, 8 diminishes rapidly
as we increase&X. From this calculation we can estimate the resulting erroré\(x)
andI'(X). Suppose thatA(X), I'(X)) — (A, T') asX — oco. If A(X) — AandI'(X)—T
are both small then from the standard theory for initial value problems, we have the
is proportional to bothA(X) — A andI'(X) — I". Indeed, numerical experiments strongly
imply that the constant of proportionality is in both cases independent of the vale of
From this we deduce that the error introduced by estimatirandI" at a finite value of
X is also proportional t&X9-® for large X. This result has been supported by some simp
numerical experiments.

While the shooting method coupled with the minimisation of the fundiiaggreasonably
robust with respect to the initial values, it still requires an initial guess to start it ¢
This initial guess has to be reasonably close to the correct solution to prevent the hi
oscillatory part of the solution from dominating the slowly varying component and maki
minimisation ofF impossible. Empirically, the starting valuesafndy have to be within
5% of the correct values to give convergence. To obtain this initial guess we note from
results in [KL95] that asl — 2 we havea — 0. Settinga =0 andd =2 in Eq. (2.8) gives

R§$+;—LRg—R+R|R|2=O, R(0) =0, ROreal R-—0ast—oco. (3.6)

It is well known that this equation has a unique positive solution (calledjthend state
[MS81]) which decays exponentially for large Indeed, there are a discrete set of value
of R(0) at which it has a solution, with the first three (in increasing order) given by

vo =0, y1 = 2.20620086465  y» = 3.33198926658

Here the ground state is given by. The solution of (2.8) for whichQ| is monotone
decreasing determined in [LPSS88Db] is known to be a perturbation of the ground state
Q(0) close toy; whend is close to 2. To seek more solutions we tdlkadose to 2 and search
for values of @A, I') in a neighbourhood of each of the points ). In particular, taking

d =2.01 we found many solutions with close to both 0 and tg;, although none were
found close toy, or to larger values. These solutions served as the starting points of
branch calculation, and each gave rise to a branch, classified by the number of oscilla
of |Q|, which were extended either forwardde= 4 or backward ta = 2.

Calculating the branches.Once the first point of a solution branch has been determin
it is possible to find subsequent points by using pseudo-arclength continuation as desc
by Keller [Ke93]. This method uses a predictor corrector procedure to find points on
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branch, in which values dod, y, and of the functionQ(¢) are predicted from previous
solution values on the branch, and these values are then corrected using a nonlinear ¢
As the predicted values are close to the final values the nonlinear solver does not ha
be as robust as the methods used to get onto the branch, but instead it needs to be
calculating a large number of points on the branches. To do this we used the follov
algorithm:

ALGORITHM 2.

e SetX suitably large.

e For each new value af along a branch, construct an initial guess for the value
a and of the functiorQ (&), using interpolation from the previous solutions.

e Using the initial guess, solve the coupled two-point boundary value problem

d-1
§

with boundary conditions

Qee + Q: — Q+iatQe +QIQ%*=0, a =0,

Q:(0 =0, Im(Q() =0 XQ:(X)+ 1+i/a)Q(X)=0.

If necessary, increask to obtain convergence.

The two-point boundary value problems are solved using a spline collocation procec
In particular, we use the code COLSYS [ACR81] with its continuation option. The codé
known for its ability to solve stiff problems, characterized by extreme boundary or intel
layers (and for which initial value methods tend to be extremely sensitive). COLSYS
an adaptive mesh procedure and can treat directly BVPs expressed as mixed-order sy
As a starting guess for the solution on a branch, we use the sol@tinobtained using the
shooting method fod = 2.01. As a check on this solution it is recalculated using COLSY
with the shooting method solution as an initial guess. The resulting two solutions w
found to be almost indistinguishable. To see the phenomena of slow oscillating and
oscillating solutions, we plot the real part of the functi@i(&) for 0<& <160 in Fig. 3.1.
The dotted line is obtained by the shooting method with0.166125 andQ(0) = 0.05009.
The solid line is obtained by COLSYS with=0.166124963 an®(0) = 0.050957837.

-0.2

Re{d}

05 |

1

FIG.3.1. The two curves are almost the same on the left, but the dotted line oscillates faster on the right
enlargement.
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TABLE 3.1
Branches Bifurcating from Zero

r A (m, n)
0.050957837 0.166124963 0, 1)
0.067775686 0.112487547 0, 2)
0.083801453 0.085818517 (0, 3)
0.099987189 0.069519523 (0, 4)
0.116433882 0.058454538 (0, 5)
0.133094235 0.050430462 (0, 6)
0.399602580 0.014988764 (0, 23)

3.2. Results

In the calculations two distinct families of multiple solution branches were determir
which either bifurcate all =2 from the zero solutioA, I') = (0, 0) or from the ground
state solutiofA, I') = (0, ). All of these solution branches bifurcating from (0, 0) appes
to satisfy the conditiorQ(0) < 1 for all d > 2 with the second derivative ¢€| positive at
& =0. In contrast, all of the branches bifurcating from¥g) appear to satisf@(0) > 1 for
all d > 2, with the second derivative 08| negative at = 0.

Each solution branch can be characterised by the number of bumps of the fuagon
whend is close to 2. We label each solution branch by the integars) such tham=0
and 1 corresponds to a branch bifurcating fregrand fromy;, respectively, and is the
number ofmaximaof |Q(&)| for &€ > 0 whend is close to 2. Thus the branch identified in
[LPSS88b] has the label (1, 1). We conjecture that there is no upper limit to the maxir
value ofn possible.

3.2.1. Starting points on the branchAll branches were started from solutions obtaine:
atd =2.01 and the values of4, I') obtained using the shooting procedure with=500.
The resulting values indexed according to the bifurcation point are shown in Tables 3.1
3.2.

A feature of these solutions visible from the tables is that m&reases the value ofis
monotone increasing in the first table and monotone decreasing in the second. The va
Ais monotone decreasing in both. Furthermore, the valuk® adrresponding to the curve
(0, n) lies between the two values @ corresponding to the curves,d) and (1 n+ 1),

TABLE 3.2
Branches Bifurcating from the Ground State

r A (m, n)
2.120627439 0.385950653 1,1)
2.083537069 0.159401767 1,2)
2.054680304 0.108972064 1,3)
2.026406398 0.083476799 1,4)
1.998756776 0.067788407 (1,5)
1.971847572 0.057096976 (1, 6)

1.827563573 0.029320039 (1,12)
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]

FIG. 3.2. The (0, 1), (0, 2), and (0, 3) solutions whegr=2.01.

and the value ofA corresponding to the curve,(0) is approximately equal to the value
corresponding to the curve,(@+ 1).

In Fig. 3.2 we plot the functionQ(¢)| for 0<& <25 for the solutions labeled
(0, 1), (0, 2), and (0O, 3). The multi-bump nature of these solutions is very evident. ¢
serve that all the maxima have similar magnitudes and locations.

In Fig. 3.3 we plot similarly the solutions labeled (1, 1), (1, 2), and (1, 3) together w
the ground state solutioR(£). It is clear from this figure that the labeled solutions eac
start close to the ground state but that the solutions (1, 2) and (1, 3) have additional bu
Note also that the second maxima of the solutions (1, 2) and (1, 3) are close to each ¢

Itis also interesting to compare the solutions (0, 1) and (1, 2), which exist for very sim
values ofA. These are plotted together in Fig. 3.4. Observe that although the behaviol
both for small¢ is quite different, the asymptotic behaviour&mcreases is very similar,
and in particular note the close correspondence of the bumps. A comparable phenon
occurs for the solutions labeled (0, 2) and (1, 3).

. ground state

e

FIG.3.3. The (1, 1), (1, 2), and (1, 3) solutions whegr=2.01.
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Q@)

20 25

FIG. 3.4. A comparison of the (0, 1) and (1, 2) solutions witka 2.01.

A different way to represent the solutions is to use the pseudo-phase-plane introduc
[KL95]. For this we define

C=|Q| and D =C;/C=RegQ;:/Q).
In these coordinates a solution which varies slowly at infinity has
C~a/t and D~ —1/& as& — oo.

Thus, this solution will approach the origin in th€,(D) plane along a straight line of
gradient—1/«. On the other hand, a solution which oscillates rapidly at infinity has

C~a/¢ and D~ %53‘d2acos(a§2/2+ 2log(¢)/a),

so thatD both oscillates rapidly and decays (or even grows) slowly. Thus, solutions in
(C, D) plane which obey the condition (2.22) are easy to distinguish from those which
not.

In Fig. 3.5 we plot the ¢, D) phase plane of the first three solutions bifurcating fror
zero. This figure is directly comparable with Fig. 3.2. A similar picture for the solutio
bifurcating from the ground state is presented in Fig. 3.6. The looping nature of the solut
is clear in these pictures.

3.2.2. Continuing the solutions for increasing dAs discussed earlier, each of the solu:
tions described above serves as a starting point of a branch of solutions. In Figs. 3.7 ar
we give two bifurcation diagrams for these solutions, plotting the valuésasfd ofI" over
a range of values af varying fromd = 2.000001 tod = 4. The graph for the values &
show thatA is amonotone increasinfyinction ofd, with A— 0 asd — 2. Note furthermore
that the ordering of the values éfon each of the curves fatr=2.01 (such that the value
of A on the curve (Dn) lies between the values for,(@) and (1 n+ 1)), continues for all
values ofd, and we conjecture that the curves do not intersect at any point. From Fig.
the division of the solutions into two groups is very evident, WittD) tending either to 0
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CE)

3.5. The phase plane of the (0, 1), (0, 2), and (0, 3) solutions wher2.01.

ground state

0.5 1 1.5 2
C(&)

.3.6. The phase plane of the (1, 1), (1, 2), and (1, 3) solutions wher2.01.

0.4+

0.2

FIG. 3.7. The value ofA as a function ofl for each of the branches.
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Qo)
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d

FIG. 3.8. The value ofl" as a function ofl for each of the branches.

ortoy; asd — 2. Asd — 4 (and presumably for larger valuesd)fwe note thaQ(0) — 1.
For the branches bifurcating from the zero solutions the curves appf@édh=1 from
below, and for the other branches they approach it from above.

The case ofl =3 is of physical interest. All of the curves continuedte- 3. The corre-
sponding values of4, I') are given in Table 3.3, divided into the two branches for clarit

The resulting function$Q ()| for the curves labeled (0, 1), (0, 2), (0, 3) are plotted i
Fig. 3.9, and the corresponding curves in tle D) plane plotted in Fig. 3.10. Similar
figures for the curves (1, 1), (1, 2), (1, 3) are given in Figs. 3.11 and 3.12. Observe that <
of the loops present in these branches wtten2.01 have opened out wheh= 3.

3.2.3. Continuing the solutions as-d 2. The limit asd — 2 corresponds to the case
studied in [KL95]. To investigate the behaviour in this case we consider three branc
namely (0, 1), (1, 1), and (1, 3) in the limit dfsmall.

Branch(1, 1). Thiscorresponds precisely to the solution in [KL95] which is constructe
as a perturbation of the ground state fox a—/? of the slowly varying solution when
£ > a~¥2, with a matching between these two regimes obtained by comparing the solu
with a parabolic cylinder function. Values ofA(T") for various values ofl are given in
Table 3.4.

In Fig. 3.13 we plot the resulting solutiop®(&)| together with the ground state solution
and in Fig. 3.14 the same solutions in tiz O) plane. The rapid convergence towards th
ground state is clear.

TABLE 3.3
r A (m, n)
0.8399592743 0.3212400792 0, 1)
0.9716454540 0.1697328431 0, 2)
0.9982277883 0.1154776778 0, 3)
1.8856569872 0.9173561430 1,1)
1.1166549497 0.2269653116 1, 2)

1.0211870804

0.1377250206

L3
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FIG. 3.11. The curves (1, 1), (1, 2), and (1, 3) whég=3.
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TABLE 3.4
d r A
2.01 2.120627441051382 0.3859506507555086
2.001 2.157338250885611 0.2932307852829842
2.0001 2.175013262845138 0.2374712003157395
2.000001 2.190154601923612 0.1730560597671120
2.00000001 2.196333944737588

2.0000000001

2.199490232697582

0.1366120916995973
0.1130409067693504

T
ok
N . 1
Slne o~ '
~ e T /N 7
-~ o3 N
~< : .
-0.1[ ~ ©2 7.
~0.2}
ol
o
-0.3} 4
-0.4 ©, 1 b
-05 B
L . ) L . L
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
CcE©)

.3.12. The phase plane of the curves (1, 1), (1, 2), and (1, 3) wher3.

)

dashdotted line: d = 2.0000000001
dashed line: d = 2.000001
solid line: d =201

dotted line:  ground state

FIG. 3.13.

The curve (1, 1) ad — 2.

20
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dashdotted line: d = 2.0000000001

dashed line: d = 2.000001

0.4} solid line: d =201

dotted line:  ground state

-0.8F

CE)

FIG. 3.14. The phase plane of the curve (1, 1)hs> 2.

Branch(1, 3). For comparison, the values for a multi-bump solution which also bifu
cates from the ground state are shown in Table 3.5.

In Fig. 3.15 we plot the resulting solutiop®(&)| again compared with the ground state
We observe that all three solutions are initially close to the ground state, with the regior
which they are close increasingagapproaches 2. Thisis as predicted by [KL95] in which i
is shown thaf () is close toR(§) for £ < 1/,/aasa — 0. Furthermore, all solutions decay
for large values o#, again in accord with the predictions of [KL95] for> 1/a%2. Where
these solution differ from those considered by [KL95] is in the intermediate behaviour
which |Q(&)]| displays a multi-bump phenomenon. If we define a&, a plot of |Q| as a
function ofy is given in Fig. 3.16. In this we can see that the locatiornsdfthe maxima and
minima of |Q(y)| are approximately constant, implying that the multi-bumped behavic
occurs wherg = O(1/a) which is between A,/a and Y/a*?. Note further, however, that
in the& coordinate, the bumps appear to be translates of each other. A graph of these
solutions in the ¢, D) plane is given in Fig. 3.17.

Branch(0, 1). Finally, the (C, A) values for the first branch bifurcating from the zerc
solution are given in Table 3.6.

In Fig. 3.18 we plot the solutions for these values and see a similar phenomenon to tt
the above calculation, viz., that the solutions all look similar, with the bumps appearin
be invariant apart from a translation éi$s reduced. Plotting the solutions agaigst a&,

TABLE 3.5
d r A
2.01 2.054680413660254 0.108972053473581
2.001 2.178637993258769 0.088084243354237
2.0001 2.200151746863060 0.073266114342636
2.00001 2.203694245603700 0.062877129274365

2.000001 2.204551856643807 0.055232787596050
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FIG. 3.15. The curve (1, 3) ad — 2.
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FIG. 3.16. A rescaling of the curve (1, 3) ak— 2.

CE)

FIG. 3.17. The phase plane of the curve (1, 3)s> 2.
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TABLE 3.6
d r A
2.01 0.050957837350847 0.166124963113730
2.001 0.007482754125859 0.123033038440185
2.0001 0.001121615461758 0.097998891850343
2.00001 0.000172826027901 0.081700091451878
2.000001 0.000027092964890 0.070188665579905

we see very clearly that the location of the maximum point is almost invariant in t
rescaled variable, again implying that the multi-bumped behaviour occuésHa(1/a)
(see Fig. 3.19). A graph in th€( D) plane is given in Fig. 3.20.

3.2.4. Scalings as &> 2. We find from Fig. 3.7 that on all the branchésdecreases
extremely fast asl — 2. LeMesurieret al. [LPSS88b] and Kopell and Landman [KL95]
used asymptotic arguments to imply that on the branch (1, 1)

k
d@ — 2~ A exp ™  asa— 0, (3.7)

wherek ~ 12.75 could be computed analytically ane- 7. It appears from our calculations
that similar behaviour occurs for the other branches (although the calculatiois etry
sensitive). Using a least squares fit to calcuked@d. gives the results shown in Table 3.7.
In contrast, a rather different scaling law is observed @0). In particular, on the
branches labeled (@) we find that there are exponenjsand constantk, for which

Q(0) = kn(d —2)™.

The resulting values of these are shown in Table 3.8.

An explanation of this scaling phenomenon together with an asymptotic descriptiol
the multi-bump solutions will be given in a forthcoming paper.

d=201 d = 2.0001 d = 2.000001

1]

15 20 25

FIG. 3.18. The curve (0, 1) ad — 2.
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TABLE 3.7
(m, n) A k (m, n) A k
1,1) 3.1412 13.23 0, 1) 1.2234 2.61
1,2 1.2217 2.45 ©, 2) 1.1019 26.10
1,3) 1.1115 30.32 0, 3) 0.9853 96.32
TABLE 3.8
n Yn Ky
1 0.8018 1.753
2 0.8669 3.248
3 0.9191 5.213

Q)

D)

c®)

FIG. 3.20. The phase plane of the curve (0, 1)hs> 2.
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4. ANUMERICAL ALGORITHM BASED UPON INVARIANT METHODS

The functions calculated in the previous section are all possible candidates for the
lution of the solutions of the nonlinear Scldinger equation, but the analysis gives n
indication as to their stability or indeed the evolution of the solutions of NLS from art
trary initial data. To investigate such a form of blow-up behaviour requires the use
sophisticated numerical approach. In this section we describe and analyse such as n
ical method for solving the time dependent problem (1.1), and in the next section we
this method to investigate the stability of the self-similar solutions calculated above.
method we describe exploits the symmetries of the NLS and has close similarities tc
dynamic rescaling methods developed by Papanicathail but is rather easier to imple-
ment and has applicability to a wide range of problems. Our formulation is based u
the scaling invariant moving mesh methods described in [BHR96, BCHR96, BC98] wt
have proved very effective for solving a variety of problems involving blow-up in systel
of partial differential equations which exhibit an invariance under rescaling. These mett
involve a method of lines discretisation ofr, t) on a moving meshr; (t) determined by
using a relaxed form of equidistribution. The methods are so constructed that any na
scale invariance in the original problem is automatically inherited by the numerical solut
and yet they allow a natural incorporation of general initial and boundary values.

4.1. Semi-discrete Approximations

To construct the approximation method we introduce a discrete approximtipnto
u(r, t) at the point,R; (t). The numberN of mesh-pointsR; (t) is fixed throughout the
computation, but the location of each point changes to allow for a finer mesh close tc
singularity.

To approximate the radially symmetric solutions of the partial differential equation (1
we use a Lagrangian formulation of it in conservation form, viz.,

ird‘l[% _dudr

ar d-1 d=1,,112 —
It ardt}—i_(r ur), +rtulul® =0, (4.1)

with boundary conditions
ur(0,t) =0, u(L,t) =0. (4.2)

The latter boundary condition is an approximation to the boundary conditiambinfinity,
andL is taken suitably large and fixed.

Equation (4.1) is discretised in space on the nmiggh) by representing the approximation
to u(r, t) as a piecewise cubic polynomial, using Hermite cubic shape functions on e
interval [R, Ri;1]. Taking collocation at suitable Gauss points within the intervals ar
enforcing the exact solution of Eq. (4.1) at these points, we obtain a $¢tdifferential
equations fotJ; andR, of the form

dy, d

whereA, B, andF are appropriate nonlinear functiondffandR,; . Details of this procedure
are given in [HR96].
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The meshR; () is determined by equidistribution using a relaxed form of the procedt
described in [DD87]. Supposing th&(t) =0 andRy (t) = L, the mesh point&, (t) are
chosen to equidistribute a monitor function of the solutddiu, u;) > 0. In [DD87] it is
proposed thaR; satisfy the integral condition

Ri i L
/ Mdr:—/ Mdr; i=0,...,N. (4.4)
0 N Jo

A mesh satisfying (4.4) will be said to uidistributed This formulation has two dis-
advantages for our purpose. First, it requires a carefully selected mesh attitheSec-
ond, it is prone to mesh instability [HR97]. Instead we consider a relaxed form of (4
(called MMPDES in [HRR94a, HRR94b]) and require th(t) satisfies the stiff integro-
differential equation

Ri P L
fRi=_</ Mdr—l—/ Mdr), i =0,.. ., N. (4.5)
Ro N Jo

It is convenient for the derivation and analysis of this method to con§dgy as discrete
values of a continuous mesh functi®gé, t) so thatR, = R(iﬁ, t). Here¢ is a “computa-
tional” coordinate in the fixed interval [0, 1]. Differentiating (4.5) twice with respect to
gives [HRR94a]

‘L'R{gg = —(M Rg)g (46)

For a given functionM, Eq. (4.6) can be discretised using a simple three-point fini
difference with equally spaced valuesof his yields a set of ordinary differential equations
for R (t) of the form

CR = D(R,U)), 4.7

where D depends orR;, U; through the monitor functioM. An elementary but very
revealing calculation gives the natural time scale for the evolution of the mesh under
action of this differential equation. Suppose thats the “relaxation-time” under which
macroscopic changes of the mesh occur. Then by considering the dimensions of sil
guantities in (4.6) we have that

T
A~ —. 4.8
- (4.8)

If is smallandM is large, the mesh evolves rapidly. This resultis crucial in our subsequ
analysis of the performance of the method.

To implement the method, the two systems of Eqgs. (4.3) and (4.7) are solved simult
ously using a BDF method (in particular the stiff integration package DDASSL [Pet8:
We observe that this method is convenient to use, and while it does not generally inl
the symplectic structure of the time-evolution of the PDE, it is unlikely that the discre
Egs. (4.3) and (4.7) are themselves Hamiltonian, thus somewhat reducing in advanc
effectiveness of using a Hamiltonian integrator. To maintain the accuracy of the temp
integration we use high relative and absolute tolerances in the ODE integration pacl!
and constantly monitor the error estimates throughout the integration procedure.



SOLUTIONS OF THE NONLINEAR SCHRDINGER EQ. 779

4.2. Invariant Meshes

Both the PDE (1.1) and its transformed form (4.1) are invariant under translation:
time, space, and the scaling transformations in (2.5) and (2.6). All of these transformat
are important in the resulting dynamics of the solution, and it is thus highly desira
that this invariance is reflected in the numerical scheme. We argue that as the sc
invariance dominates the formation of the singularity, a scaling invariant numerical sch
will also resolve the singularity effectively. To achieve this invariance we insist that
(Ui (1), R (1)) is a solution of the discrete equations then so should be the rescaled solt
(A~Y2U; (A1), AY2R; (A1), provided that we exclude the boundary conditioRgt A simple
calculation shows that the differential equation (4.3), which is derived directly from t
PDEs, automatically inherits all the required scaling properties. However, to have a solt
of (4.5) which is also invariant requires a careful choice of the monitor fundfiokinder
the scaling transformation, (4.5) becomes

A_leg = [M ()F%u, A_lur) Rg]g,

and hence to obtain scaling invariance we require khét, u;) satisfy
AM(A‘%U, Atu) = M, uy). (4.9)
The simplest monitor function satisfying (4.9) is
M(u, uy) = |ul?. (4.10)

A more subtle monitor function which gives better resolution of a varying curve but |
similar invariance is

M(u, Ur) = Vealul* + Blur | (4.11)

We use both (4.10) and (4.11). Observe thhis large wheru andu, are large. Conse-
quently, more mesh points will be placed near singularities. The system (4.3) and (
with M given by (4.10) or (4.11) describes a dynamical system which, apart from the ri
boundary condition, is scaling invariant. Such a system admits numerical self-similar s
tions, mimicking the analytic solutions of the previous section. In particular, the numer
scheme admits solutions of the form

Ui(t) = (a(T — t))%exp(—zia log(T — t)) Q. R =@aT-1))?Y;, (412

whereQ; andY; are independent of time. The functi@h is automatically a discretisation
using collocation of the continuous functi@(y) on the non-uniform mesh. The nu-
merical scheme automatically preserves self-similar structure when it exists and find:
correct coordinate transformation in such a case. However, it is important to note tha
do not impose a self-similar (or indeed any other) structure upon the solution, and the
merical method can start from arbitrary initial data. A desirable (but very difficult to proy
property of the scheme is that the stability properties of any self-similar solution shoulc
inherited. We have observed this numerically in all of our experiments (cf. Section 5).
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When implementing the numerical method it is found that using the system (4.7)
lead to instabilities. This is because, with a fixed number of mesh points, too many pc
are placed in a neighbourhood of the singularity and too few are placed near the bour
points. To prevent this, a smoothing of the monitor function is used so thkiig the value
of M at the pointR; then we replacd/; in the finite difference discretisation of (4.7) by

i ([Sw@EOT] e

k=i—ip

whereip is a user-defined, smoothing parameter.
The effect (4.13) is to preserve the symmetry invariance close to the point of singule
but to gradually weaken it nearer the boundary.

4.3. Analysis of the Scheme

We now briefly analyse the performance of the resulting schemesavhéby consider-
ing how well they capture the behaviour of a singularity evolving in the self-similar mann
At a timet close to the blow-up tim&, the solution undergoes macroscopic changes in
time-scale of orderT —t). In comparison, the relaxation time for the meshis-t/M.

If M = |u|? then this gives

A=t/luf=1L2=1¢(T —1),
with an exactly similar result foM = \/a|u|* + B|u, |2. If T is small, the mesh relaxes on
a time scale which is small compared to the natural problem time scale, but it scales i

same way as the original solution, giving it excellent stability properties. As a result
mesh converges rapidly to, and stays on, the equilibrium manifold. On this manifold

have from (4.4) that
R i L
/ Mdr = —/ M dr,
0 N Jo

so that ifM = |u|?

/o 2a<T—t>’Q(2a(T—t>) dr:ﬁ/o 2a(T—t)‘Q<2a<T )) ar
Thus
R /(2a(T—t)¥? i L/@aT-)v?
/ IQ(y)|2dy = N/ 1Q(y)|2dr
0 0
zl—/oo|Q(y)|2dy ast—T. (4.14)
N Jo

Defining the functionJ(z) by

3@ = /0 1Q(y)2dy. (4.15)
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we have
R = (2a(T —t))l/zJ_l(iNJ(oo)) = (2a(T —1))Y?Y;. (4.16)

The formula (4.16) then gives the mesh for values fafr whichi /N is not close to one.
Indeed, ifi /N is small then
i J(o0)
R~ (a(T —t)"? = :
N |Q(0)?
so thatR; scales exactly as the transformed coordinate of the self-similar solution, with
mesh points distributed uniformly within the evolving singularity.

In contrast, as — N we have thaty; — co, and a more careful calculation using the
approximation Q(y)| ~ «/y gives

1 1 i Joo 1
2t (%) Gar o 1) @19

(4.17)

and hence as— N

1 o i NS o
oo () (@ o) @9

In practice, however, the effects of smoothing and of the truncated boundary conditior
to distort the formulae (4.18) and (4.19) ifs very close taN.

5. NUMERICAL COMPUTATIONS OF TIME DEPENDENT SOLUTIONS

In this section, we use the moving collocation method mentioned above to solve (
in three dimensions with a variety of initial conditions. Our purpose is to investigate
stability of the self-similar solutions computed in the previous sections. In particular,
consider taking both monotone and non-monotone initial data.

5.1. Monotone Initial Conditions

For our initial calculation we take =5 and

62,  if0o<r <5,
u(r,O):{ V2 -~

5.1
0, ifr > 5. 1)

This problem has been considered by many authors (see [MPSS86, TS92, ADKM!
McLaughlin et al. [MPSS86] computedl ~0.034301966. Furthermore, Akrivist al.
[ADKM92] by using a refined Galerkin-finite element method demonstrated that the bl
up behaviour was indeed self-similar.

To apply the method described in the previous section we choose the monitor func
to be

M(r, t) = VIu(r, DI + 2Jur (r, 12, (5.2)

taker =107%, use a spatial smoothing parameifer=5, and setN = 81. Since the error
tolerance for the time integration is sensitive for problems with singularities, it must
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TABLE 5.1
N Monitor function atol Blow-up time
81 v/ 2lur |2 + ul* 10° 710°° 0.0343013614238
91 luf? 10° 710°° 0.0343013710865
61 lu? 10° 710° 0.0343013774962

chosen carefully. While a small error tolerance gives more accurate solutions, if the toler
is too small the CPU time can become excessive and cause breakdown earlier than di
near blow-up. Here we choose the relative tolerance tadde= 10-° and the absolute
tolerance to change according to the maximum value|o¥iz.,

atol = 107° if ju(0,t)| < 100Q

atol=10"%  if 1000 < |u(0, t)| < 30,00Q
atol=10""  if30,000< |u(0,t)| < 150,000
atol= 107 if 150,000< |u(O0, t)|.

Using these parameters, we can reach a maximum computed valu@®.df| = 920,000
fort =0.0343013614215. To obtain the blow-up time, we use a nonlinear least square
by evaluatingu(0, t;) at a series of timef§ and then consider the problem

minimize» “[log(A//T — ;) — log(|u(0, t;)])]>. (5.3)

=1

Herem corresponds to the time spread of the numerical computation, and its value is Z
for which |u(0, tj)| varies from 6800 to 920,000. The best least squares fit is given
A=1.3918 andTl =0.03430136142381, implying thai(0, t)| ~ 1.3918/ /T —t (notice
that the self-similar solutiopu(0, t)] = Q(0)/+v/2a(T —t) =~ 1.3921258/T —tin(2.7)).

The numerical computations indicate that both the blow-up finaad the phase shift
are relatively insensitive to the number of mesh points and the precise monitor functior
Table 5.1 we demonstrate this by calculatihdor three sets of parameters.

In Fig. 5.1 we illustrate the development of the singularity by plotting t) for several
values oft — T.

350 4 1= 0.034301361416092

300 1 « 0.0342938465

FIG.5.1. Development of the singularity when(0, t)| = 100, 500, 100,000, and 500,000.
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FIG.5.2. |u(x,1)|/|u(0,1)| versus when|u(0, t)| =100, 500, 2500, 10,000, 100,000, and 500,000.

InFig. 5.2, we plotu(R;, t)|/|u(0, t)| as afunction of the node indéxor |u(0, t)| = 100,
500, 2500, 10,000, 100,000, and 500,000. These curves are almost invarja(@, &y
increases. This is precisely what would be expected of a self-similar solution and stro
implies that the numerical method has automatically identified the correct scaling prope
of the solution.

In Fig. 5.3, we plotR; [u(0, t)| against|log(T — t)| for i =2,...,13. From (4.16) it
follows that for a solution evolving in a self-similar manner we should have

Ru(0, )| ~ Yi|Qil which is independent dffor large values ofu(0, t)|.

This behaviour is confirmed by the figure, and we see further that the mesh points
distributed locally uniformly as predicted by (4.17).

We now compare the computed solution with the exact self-similar solution (2.7) deri
from the solution of (2.8) on the branch (1, 1) in the cdse 3. To do this we look at
solutions both starting from the Gaussian initial function and also from the two furtl
initial functions

2 .
u(r. 0) — {6@/(1+r ), if0 <r < 200 (5.4)

0, if r > 200,

0.8 -

1) o]

X

s .
15 20 25 30
llog(T-t)

FIG.5.3. R|u(0,t)| versus| log(T —t)|.
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TABLE 5.2
Initial value Line N Monitor function atol Blow-up time
(5.1) Solid line 81 v/ 2lur |2+ Jul* 10° 710°° 0.03430136142
(5.4) Dotted line 141 (1+4+r1)/2/u 2+ |ul* 10°\ 1077 0.03561777658
(5.5) Dashed line 81 v/ 2|ur |2 + Jul* 10° 710° 0.08971350508

and

5.5
0, if r > 10. (5-3)

2\4 R
u(r,O):{G/(l+r)’ if0 <r <10,

Thefirst, (5.4), is called the Lorentzian initial condition. Since the initial vaki@ G 1+r ?)
approaches 0 relatively slowly as— oo, we must use the large computational domai
[0, 200]. We choose the monitor function to b= (1+r)+/|ul* + 2|u, |2 so that the
mesh points are distributed more uniformly for 1 compared with those generated by
M = +/|u]* + 2|u; |2, but so that scaling invariance is still retained for smallhe blow-up
times estimated by using the least squares method for these initial functions are give
Table 5.2.

Here,atolis the absolute tolerance. The blow-up time is estiamted using the least squ
fit procedure described above.

According to (2.7) the phasgof u(0, t) is given asymptotically by

1
=0+ %a log(T /(T —1t)),

s0¢ is asymptotically a linear function af= —log(T —t) with gradient ¥2a. Figure 5.4
shows the three curves ¢f for the three initial functions. Asymptotically these are al
straight lines with almost identical slopes of approximately 0.5450 giviaged.9173,
which is precisely the value determined earlier.

10 - |

. . " . s
s 10 15 20 25 30
flog (T-1)|

FIG.5.4. The phase versuslog(T —t)| for the three curves (see Table 5.2 for the initial conditions and th
corresponding lines).
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H

=
&

Q) el L
23 X 0} -

'
[

=
a

(2a(T-1) " 4uiot
-
(2a(T-0r 0.1

o s

10 20 ] ) 12 14 16 18 20 22
<alog(T/AT-t)) <wlog(TAT-t))

FIG.55. /2a(T —1)|u(0,t)| versust = log(T /(T — t)) with three different initial values (see Table 5.2).
The vertical direction is enlarged ne@(0) on the right.

In Fig. 5.5 we see the convergence of the rescaled fungt@e(T —t)|u(0, t)| plotted
againstr = log(T /(T —t)) using the value o estimated above. All three curves approac
1.88566, which implies that the amplitudes of all three solutions at the origin asymptotic
approach the corresponding values of the exact self-similar solution (2.7 ds confirm-
ing the stability of this function. Observe that the three initial functions lead to similar dec
rates, implying that the rate of asymptotic convergence toward the self-similar solution
not depend upon the initial data—rather on the local linearisation about the self-similar
lution of the NLS in the rescaled variables. From a careful analysis of the figures it app
as though the decay rate@((T — t)¥/?) so that we conjecture that in the limit

Q0
V2a(T =1

where the value of the constaBtprobably depends upon the initial conditions.

The global stability of the (1, 1) branch of self-similar solutions persistsiageduced
to 2. To see this, we choose the initial value (5.1) and thke?.5, 2.01, and 2.001. The
corresponding rescaled solutions are plotted in Fig. 5.6, where we can see that the c

u(0,t) = +C+O(T =1)¥?,

.
2.2 Q(0) = 2.1573 (d = 2.001) T

Q(0) = 2.1206 (d = 2.01) e

| Qo) = 1.9425 (d = 2.5) - —_- I

2a(T-) (0}

. . ) .
o s 10 15 20 25
T=log(THT-1))

FIG.5.6. /2a(T —1)|u(0,t)| versus logT /T —t) for d =2.5 (solid line),d = 2.01 (dash-dotted line), and
d =2.001 (dashed line).
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Re(u(r}) and Imiu(s 1

Refu(r)} and Im{u(r))

Reluir)

Imfu(r.)

o 0.02 0.04 0.06 0.08 01 012 014 0.18 0.18 02 - o 0.005 o001 0015 00z 0.025 0.03
. .

FIG. 5.7. Re(u(r,t)) and Im(u(r,t)) versusr for t=0.03429384648|u(0,t)| =500 on the left and
t =0.03430106161Ju(0, t)| = 2500 on the right.

approach the corresponding values0) ast — T with the rate of convergence slowing
down markedly asl — 2.

Taking the initial function (5.1), we now compare the solution curves as functions c
with the exact self-similar solution at three values$ ef T for which|u| takes the respective
values 500, 2500, and 100,000. In each case the phakthe self-similar solution (2.7)
is chosen in such a way that the exact solution and the numerical solution have the ¢
phase at the origin.

The real and imaginary parts of the numerical solution and the self-similar solution
given in Figs. 5.7 and 5.8 for three different times by using the initial values (5.1). Sc
lines represent the numerical solutions and dotted lines represent the exact solutions
From the above figures, we can see that the corresponding curves convergelas

5.2. Non-monotone Initial Data

We now look at the effects of taking non-monotone initial data. The purpose of t
calculation is to examine the stability of the self-similar solutions calculated in Section 3
do this calculation we define an a priori blow-up timélof 0.1 and take = 0. Substituting
these valuesinto (2.7) with= 0 we obtain aninitial function corresponding to the exact sel
similar solution (apart from a perturbation at the boundary). Then we solve problem (.
with this initial function and compare the results with the exact self-similar solutions (2.

Refu(r,0}

Retuir)

Imuie,)

Refuir.1)) and Im{u(r,4)
L o = N w _a 0 o N o @

Re{uir,1) and mivir)
.

Imiu(e)

FIG.5.8. Re(u(r,t)) and Im(u(r, t)) versug fort=0.03430136123|u(0, t)| = 100,000). The left figure is
the leading part of solutions and the right figure is the middle part of solutions.
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{2a(T-1) (o)
o
H

a
]

0.85

. L " L L i : L
o 2 4 6 8 10 12 14 16 18
t=log(THT-1))

0.8

FIG.5.9. 2a(T —1t)|u(0,1)| versus logT /(T —t)) for branch (0,1).

First, we consider the branch (0, 1) with=3. On this brancha=0.3212 Q(0) =
0.8399, and hence

lu(0, 0)| = 3.3137

In Fig. 5.9 we plot the amplitude of the rescaled numerical solwi@a(T —t)|u(0, t)].
This clearly stays close t@(0) for some time before diverging, implying that the (0, 1
branch is mildly unstable. Indeed(r, t) remains close to the self-similar solution at leas
until ju(0, t)| = 100, retaining the multi-bump profile. In Fig. 5.10 we plofr, t)| against
r for Ju(0, t)| =100 (t =0.09989 and|u(0, t)| =2500(t =0.09999817. The dotted line
represents the exact self-similar solution (2.7) for the same time. In the latter figure
clear that the multi-bump profile has evolved into the monotone profile characteristic of
blow-up profiles of the previous section.

Now we consider the branch (1, 2). Fabe= 3 we havea =0.2269 andQ(0) =1.1166.
We note that whereas the solution branch has 2 bumpbsdimse to 2, the solution at=3
is monotone. In Fig. 5.11 we again plot the rescaled numerical solution at the origin
compare it withQ(0). Again we see that the two solutions are initially close, but the (1,
solution is rather more unstable than the (0, 1) solution.

Ittt
lute.ob

o 002 004 008 008 0.1 01z 014 o186 o018 0.2 o 0005 001 0035 002 0025 003 0036 004 0045 005
. i

FIG.5.10. |u(r,t)| versus for |u(0, t)| =100 on the left and fopu(0, t)| = 2500 on the right.
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{2a(T-t)"2jut0.)]
;

3 4
=log(T/(T-1))

FIG.5.11. /2a(T —1)|u(0, t)| versus logT /(T — t)) for branch (1,2).

We conjecture that all of the further branches of self-similar solutions are unstable, \
the degree of instability increasing with the number of bumps in the solution profile.

6. CONCLUSIONS AND FURTHER WORK

The results reported in this paper demonstrate that although the self-similar solt
determined in [LPSS884a] is apparently globally attracting, it is not unique. Instead there
an infinite number of unstable self-similar solutions which bifurcate either from the grot
state or from the zero solution whdn= 2. The unstable self-similar solutions play a role ir
the transient dynamics of the evolution of the blow-up solutions and are thus worth stud
in more detail. The scaling invariant numerical methods we have developed are effecti
computing the dynamics of the solutions starting close to one of these self-similar state
a future paper we will investigate their asymptotic propertias-as2 and will also consider
the effect of using scaling invariant numerical methods in the special cake af
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